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A B S T R A C T

Background: Fine particulate matter (with aerodynamic diameter ≤2.5 µm, PM2.5) causes huge disease burden
worldwide. However, evidence is still inadequate and inconsistent on the relationships between PM2.5 con-
stituents and mortality, especially in low resource settings.
Objectives: To evaluate the impact of PM2.5 constituents on cause-specific mortality in China.
Methods: We obtained daily mortality data for 161 communities in 2011–2013 from the Disease Surveillance
Point system in China. Daily concentrations of major PM2.5 constituents, including organic carbon (OC), ele-
mental carbon (EC), sulphate (SO4

2-), nitrate (NO3
- ) and ammonium ( +NH4 ), were estimated by using the modified

Community Multiscale Air Quality model. For each community, we applied quasi-Poisson regression and
polynomial distributed lag models to estimate the effects of PM2.5 constituents on cause-specific mortality. Then,
the pooled effect estimates were calculated by a random-effect meta-analysis based on the restricted maximum
likelihood estimation. Stratification analyses were performed by region, gender, age group and education level
to identify the vulnerable populations.
Results: Each interquartile range change of EC, OC, SO4

2-, NO3
- and +NH4 at lag 0–3 day was associated with

increments in non-accidental mortality of 0.45% (95%CI: 0.21, 0.69), 1.43% (0.97, 1.89), 0.71% (0.28, 1.15),
0.70% (0.10, 1.30) and 0.95% (0.39, 1.51), respectively. The associations were stronger for the deaths from
cardiovascular disease and myocardial infarction, the elderly, illiterates, and people living in the South region.
Conclusions: Our findings suggest positive associations between PM2.5 constituents and cause-specific mortality,
particularly for myocardial infarction.

1. Introduction

Ambient particulate matter pollution is a high-ranking risk factor
for mortality worldwide (Cohen et al., 2017), and the disease burden is
extremely high in China – it has been estimated that around 1.2 million
deaths in 2017 were attributable to particulate matter (Zhou et al.,
2019). Among those particles, fine particulate matter (with

aerodynamic diameter ≤2.5 µm, PM2.5) is of greater concern with the
capacity to deposit in the lung and smaller airways. PM2.5 is a mixture
of various organic and inorganic substances, and among the major
constituents are organic carbon (OC), elemental carbon (EC), sulphate
(SO4

2-), nitrate (NO3
- ) and ammonium ( +NH4 ) (Liang et al., 2016; Zhou

et al., 2016). OC and EC are both carbonaceous aerosols. OC can be
emitted primarily or produced secondarily by atmospheric
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photochemical reactions, and EC is primarily from vehicle emissions
and combustion sources. Among the water-soluble inorganic ions, SO4

2-,
NO3

- and +NH4 are the most abundant. SO4
2- and NO3

- are secondary ions
formed from their precursors’ sulfur dioxide and nitrogen oxides which
are emitted during biomass and fossil combustion.

The short-term impact of PM2.5 mass on mortality has been well
documented (Cohen et al., 2017; Lu et al., 2015; Qi et al., 2020), but
evidence on the relationships between particle constituents and mor-
tality is inadequate and the results are mixed. Although positive asso-
ciations between EC, as well as OC, and mortality have been found in
several studies (Achilleos et al., 2017; Forouzanfar et al., 2015; Yang
et al., 2019b), the magnitude of excess risk varies greatly – for instance,
the excess non-accidental mortality per interquartile range (IQR) in-
crease of EC ranged from 0.2% to 7.9% in previous findings (Cakmak
et al., 2009; Krall et al., 2013). The relationships between other major
constituents and mortality risk still remain controversial.

Most of the heterogeneity in the effect estimates can be explained by
regional differences (Achilleos et al., 2017). Therefore, the results from
previous studies, which were conducted mostly in Europe and North
America (Achilleos et al., 2017; Forouzanfar et al., 2015), may not be
applicable to China, where the levels and composition of PM2.5 differ
greatly from those countries in high resource settings (Snider et al.,
2016). Although sporadic evidence has begun to emerge in some highly
developed cities (Beijing, Shanghai, Guangzhou, and Xi’an) (Geng et al.,
2013; Huang et al., 2012; Li et al., 2015; Lin et al., 2016), it remains
unclear of the impact of each PM2.5 constituent on the mortality risk
among the general population in China.

Therefore, in order to address this knowledge gap and to identify
priorities in reducing PM2.5 related premature mortality, we conducted
this modelling study to estimate the relationships between PM2.5 con-
stituents and cause-/gender-/age-/education-/region-specific mortality
in 161 Chinese communities based on the national mortality database.

2. Methods

2.1. Study area

This population-based study was based on time-series data from the
Disease Surveillance Points system (DSPs), a national registration net-
work comprising 161 communities and covering 6% of the total Chinese
population. These communities were selected through a multistage
stratification, evaluation and adjustment process, with each community
representing a county in rural areas or a city district in urban areas.
DSPs has shown good representativeness both nationally and regionally
(Zhou et al., 2010). The geographical locations of the communities are
shown in Supplementary Material Figure S1. In the main analyses, we
included all the 161 communities to obtain the national estimate, and
then we divided these communities into the North and South regions
according to the Qinling-Huaihe Line to get the regional results. In the
sensitivity analysis, we further selected those communities with at least
three deaths per day on average, by which criterion 133 communities
were included.

2.2. Data sources

We derived daily mortality data for each community in 2011–2013,
and then aggregated the cause-specific deaths based on the
International Classification of Diseases, 10th version (ICD-10): non-ac-
cidental mortality (A00-R99), cardiovascular disease (I00-I99), stroke
(I60-I69), ischemic heart disease (I20-I25), myocardial infarction (I21-
I22), respiratory disease (J00-J99) and chronic obstructive pulmonary
disease (J40-J47). The daily meteorological data for each community in
the same period were obtained from the China Meteorological Data
Service Centre (http://data.cma.cn/), which included temperatures
(oC), air pressure (hPa) and relative humidity (%). These data were
collected from the basic weather monitoring station in each

community.
The daily concentrations of PM2.5 and its constituents (EC, OC, SO4

2-,
NO3

- and +NH4 ) at the horizontal resolution of 36 × 36 km during
2011–2013 were estimated by the modified Community Multiscale Air
Quality (CMAQ) model. The details of the methodology were described
elsewhere (Hu et al., 2016; Hu et al., 2017a). Briefly, the inputs of the
model included: the meteorological parameters generated using the
Weather Research and Forecasting mode (WRF); the anthropogenic
emissions based on the Multi-resolution Emission Inventory (MEIC); the
biogenic emissions generated using the Model for Emissions of Gases
and Aerosols from Nature (MEGAN); and the open biomass burning
emissions generated from the Fire Inventory, which was based on sa-
tellite observations. The capability of the model to predict PM2.5 mass
has been evaluated with monitoring data from 422 sites in 60 large
cities across China (Hu et al., 2016); and PM2.5 constituents have been
evaluated against observational data from monitoring stations in mul-
tiple major Chinese cities, such as Beijing, Shanghai, Nanjing, Xi’an,
Chongqing and Guangzhou (Hu et al., 2017b; Shi et al., 2017). The
outputs of the CMAQ model, i.e., the gridded spatial data of PM2.5 mass
and its constituents, were then overlaid with the community shapefile
of China to extract estimates of average concentrations in each com-
munity.

2.3. Data analysis

We applied a two-stage analytical strategy to assess the cause-spe-
cific mortality risk associated with PM2.5 constituents. Firstly, we cal-
culated the effect estimates of PM2.5 constituents on cause-specific
mortality for each community. In the second stage, we used the
random-effect meta-analysis to pool the effect estimates from all com-
munities to obtain the combined results.

2.3.1. First-stage analysis
We used generalized additive quasi-Poisson regression with poly-

nomial distributed lag model (PDLM) to fit the relationship between
PM2.5 constituents and cause-specific mortality in each community. We
incorporated the following confounding variables in the model: (1) a
natural cubic spline function with 7 degrees of freedom (df) per year for
the long-term trend and seasonality; (2) natural cubic spline functions
with 3 df for 4-day moving average of relative humidity and 6 df for 4-
day moving average of daily mean temperature; (3) categorical vari-
ables for public holidays and day of the week. These model specifica-
tions on adjusting for covariates were consistent with previous studies
(Liu et al., 2019; Liu et al., 2018; Yang et al., 2016; Yang et al., 2020).
In order to capture lag effect of PM2.5 constituents on mortality, PDLM
with a maximum lag of four days was used in the main analyses, be-
cause previous studies have consistently found that the short-term
health risks of PM2.5 constituents were limited to four days, such as in
California, United States (Ostro et al., 2007), and Shanghai, China
(Wang et al., 2019). Smoothing spline function was used to examine the
concentration-response relationship between each PM2.5 constituent
and mortality; if a linear curve was observed, the linear functions would
then be used instead. The lag effect was modelled using a prior third
degree polynomial (Sun et al., 2019). The lag pattern of PM2.5 con-
stituent was examined at single-day lags (lag 0, 1, 2, 3 and 4 day) and
cumulative lags (lag 0–1, 0–2, 0–3 and 0–4 day). The lags that yielded
the minimal generalized cross validation (GCV) score, indicating the
best model performance, were used in the main analyses (Liu et al.,
2019). The mortality risk of each PM2.5 constituent was first estimated
using single-constituent model. Then, to assess the influence of other
constituents and PM2.5 mass, we further conducted the two-pollutant
models by including a pair of pollutants that are not highly correlated
to avoid the model collinearity (Pearson’s correlation coefficient less
than 0.7) (Mela and Kopalle, 2002).
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2.3.2. Second-stage analysis
A random-effect meta-analysis based on restricted maximum like-

lihood estimation was conducted to pool the effect estimates of PM2.5

constituents on cause-specific mortality across 161 communities. The
impact of PM2.5 constituents on mortality was represented as the per-
centage change in mortality rate per IQR change in PM2.5 constituents.
Cochran’s Q test and the I2 statistics were used to examine the between-
community heterogeneity (Viechtbauer, 2010).

Furthermore, we estimated the concentration-response curves be-
tween PM2.5 constituents and mortality at national level using the si-
milar approach as previous studies (Gasparrini et al., 2012; Liu et al.,
2019). The natural cubic spline function was firstly applied to examine
community-specific concentration-response association between PM2.5

constituents and mortality risk, with three knots at the 25th, the 50th
and the 75th percentiles of PM2.5 constituents in each community and
minimum average concentration of PM2.5 constituents as reference.
Then, we obtained four regression coefficients and the 4 × 4 variance-
covariance matrix in each community. Finally, we combined the com-
munity-specific components of the spline function using random-effect
meta-analysis.

2.3.3. Stratification analyses
In order to identify the vulnerable subpopulations to the mortality

risk of PM2.5 constituents, we separately repeated the aforementioned
two-stage analysis by region, gender, age group and education level.
Difference test between mortality risks of PM2.5 constituents across
strata was performed through the following formula:

=
−

+

Z E E

SE E SE E( ) ( )
1 2

1 2 2 2
, where Z denotes the statistic for Z-test; E1 and E2

are the logarithm transformed values of relative risks (RRs), i.e., the β
coefficients in the models for each stratum; and SE(E1) and SE(E2) are
the corresponding standard errors (Altman and Bland, 2003; Yang
et al., 2019a).

2.3.4. Sensitivity analyses
A series of sensitivity analyses were conducted in this study. To

reduce the influence caused by small number of daily deaths in some
communities and to test the robustness of our results, we excluded the
communities where the average counts of daily deaths were less than
three, after which 133 communities were left for this sensitivity ana-
lysis. Furthermore, we changed the dfs for the long-term and seasonal
trend of mortality from 4 to 8 per year, and from 3 to 7 for relative
humidity and mean temperature, separately.

All data preparations and analyses were performed using the R
language (version 3.5.3, R Development Core Team 2018). The PDLM
was fitted using “dlnm” package (Gasparrini, 2011) and the meta-
analysis was conducted using “metafor” package (Viechtbauer, 2010).
Two-tailed P values less than 0.05 were considered as statistically sig-
nificant for all statistical analyses.

3. Results

Table 1 summarizes the statistics of environment and mortality data
in 161 communities from 2011 to 2013. The average of annual mean
EC, OC, SO4

2-, NO3
- and +NH4 was 3.3 μg/m3 (range: 0.6–18.0 μg/m3),

7.8 μg/m3 (2.0–28.3 μg/m3), 14.8 μg/m3 (2.9–62.3 μg/m3), 13.5 μg/m3

(0.7–42.1 μg/m3) and 8.9 μg/m3 (1.2–29.4 μg/m3), respectively. On
average, there were eight non-accidental deaths per day, four deaths
from cardiovascular disease and one from respiratory disease.

Fig. 1 shows the pooled percentage changes in non-accidental
mortality associated with per IQR change in PM2.5 constituents at dif-
ferent lags from the single-pollutant models. Generally, the associations
between PM2.5 constituents and mortality were statistically significant
at lag 0 and lag 1. Models using lag 0–3 day produced the minimal GCV
scores (Supplementary Material Table S1), therefore the cumulative
effect estimates we present below are based on lag 0–3 day. The

concentration-response curves between PM2.5 constituents and mor-
tality at lag 0–3 day were approximately linear, and the steepest slope
was observed for OC (Supplementary Material Figure S2).

Table 2 presents the pooled percentage changes in cause-specific
mortality risk associated with per IQR change in PM2.5 constituents at
lag 0–3 day. The associations between PM2.5 constituents and cause-
specific mortality showed low to moderate between-community het-
erogeneity, with median I2 of 29.61% (range: 0.01%, 45.24%). Per IQR
change in EC, OC, SO4

2-, NO3
- and +NH4 was related to increments in non-

accidental mortality of 0.45% (95%CI: 0.21, 0.69), 1.43% (0.97, 1.89),
0.71% (0.28, 1.15), 0.70% (0.10, 1.30) and 0.95% (0.39, 1.51), re-
spectively. The effect estimates of PM2.5 constituents were larger in
deaths from cardiovascular diseases than the non-accidental mortality,
particularly for myocardial infarction [0.86% (−0.03, 1.77), 1.94%
(0.76, 3.14), 0.83% (−0.04, 1.71), 1.15% (−0.19, 2.5) and 1.33%
(0.18, 2.49) correspondingly].

Table 3 shows the results of the stratified analyses by gender, age
group and education level. Similar effect estimates of PM2.5 constituents
at lag 0–3 day were observed between males and females. The effect
estimates were stronger in people aged 75 or older and illiterates than
younger people and those with higher education level, although the
between-subgroup differences were not statistically significant.

Fig. 2 presents the associations between PM2.5 constituents and
mortality across lag 0–3 day by region and urban–rural status. The
percentage changes of mortality per IQR increases of PM2.5 constituents
were generally higher in the South than in the North, especially for NO3

-

[1.16% (0.24, 2.09) in the South and 0.32% (−0.46, 1.10) in the
North] and +NH4 [1.35% (0.43, 2.28) and 0.68% (0.01, 1.35) corre-
spondingly]. While an exception was found for EC, with estimates of
0.33% (0.07, 0.59) and 1.06% (0.45, 1.68) in the South and the North,
respectively. Moreover, higher mortality risks of PM2.5 constituents
were consistently observed in the urban communities, although the

Table 1
Summary statistics of environment and mortality data in 161 Chinese com-
munities, 2011–2013.

Variables Mean SD Min P25 P50 P75 Max

Weather conditions
Mean temperature (oC) 13.7 9.6 −5.4 5.1 15.3 22.4 28.0
Relative humidity (%) 66.3 7.6 44.9 61.7 67.2 72.5 82.6

Concentration (μg/m3)
PM2.5 60.6 32.5 11.4 36.9 50.7 78.3 177.1
EC 3.3 2.0 0.6 1.9 2.7 4.4 18.0
OC 7.8 4.5 2.0 4.6 6.3 9.7 28.3

SO4
2- 14.8 8.8 2.9 8.8 12.5 17.7 62.3

NO3
- 13.5 8.7 0.7 6.4 10.8 19.0 42.1
+NH4 8.9 5.3 1.2 4.9 7.5 11.7 29.4

Daily deaths
Non-accidental 8 1 5 7 7 8 13
Cardiovascular 4 1 2 3 4 4 7
IHD 1 0 1 1 1 2 3
Stroke 2 0 1 2 2 2 4
MI 1 0 0 1 1 1 2
Respiratory 1 0 1 1 1 1 2
COPD 1 0 0 1 1 1 2

Gender
Male 4 1 3 4 4 5 7
Female 3 1 2 3 3 4 5

Age (years)
0–74 4 1 3 3 4 4 6
75+ 4 1 2 3 4 4 7

Education
Illiterate 3 1 2 2 3 3 6
Primary school and above 4 1 3 4 4 5 7

Note: P25, P50 and P75 denote the 25, 50 and 75 percentiles, respectively; SD,
standard deviation; IHD, ischemic heart disease; MI, myocardial infarction;
COPD, chronic obstructive pulmonary disease.
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differences were not statistically significant.
In the two-pollutant models, we only considered the pairs of

EC–SO4
2-, EC– NO3

- and EC– +NH4 , because the other pairs were highly
correlated with each other (Pearson’s correlation coefficient > 0.7)
(Supplemental Material Table S2). Overall, effect estimates of EC were
attenuated when separately introducing SO4

2-, NO3
- and +NH4 into the

model. With the adjustment for EC, the impact of NO3
-on mortality was

not statistically significant, while the effect estimates of SO4
2-and +NH4

were relatively stable (Supplemental Material Table S3).
In the sensitivity analyses, similar effect estimates of PM2.5 con-

stituents were observed when only including communities with at least
three deaths per day on average (Supplemental Material Table S4).
Additionally, effect estimates of PM2.5 constituents were stable when
we changed the dfs for potential confounders, i.e., 4–8 dfs per year for

Fig. 1. The pooled percentage changes in daily non-accidental mortality per IQR change in PM2.5 constituents during single-day lags (lag 0, 1, 2, 3 and 4 day) and
cumulative lags (lag 0–1, 0–2, 0–3 and 0–4 day). A quasi-Poisson regression with polynomial distributed lag model was used to fit the lag effect of PM2.5 constituent
on non-accidental mortality in each community. A univariate random effect meta-analysis based on the restricted maximum likelihood estimation was conducted to
pool the effect estimates.

Table 2
The pooled percentage change (% and 95%CI) in cause-specific mortality per IQR change in PM2.5 constituents at lag 0–3 day.

Cause of deaths EC OC SO4
2- NO3

- +NH4

Non-accidental 0.45(0.21,0.69) 1.43(0.97,1.89) 0.71(0.28,1.15) 0.70(0.10,1.30) 0.95(0.39,1.51)
Cardiovascular 0.68(0.18,1.18) 1.73(1.04,2.42) 0.80(0.20,1.41) 0.95(0.15,1.75) 1.15(0.40,1.89)
IHD 0.57(−0.13,1.29) 1.78(0.85,2.72) 0.82(0.10,1.54) 0.98(−0.09,2.05) 1.16(0.22,2.11)
Stroke 0.39(−0.17,0.96) 1.45(0.57,2.33) 0.93(0.18,1.69) 0.91(−0.11,1.95) 1.22(0.26,2.19)
MI 0.86(−0.03,1.77) 1.94(0.76,3.14) 0.83(−0.04,1.71) 1.15(−0.19,2.5) 1.33(0.18,2.49)
Respiratory 0.59(0.09,1.09) 1.30(0.33,2.28) 0.51(−0.48,1.51) 0.46(−0.84,1.77) 0.66(−0.61,1.94)
COPD 0.51(−0.24,1.27) 1.54(0.38,2.71) 0.78(−0.35,1.93) 0.44(−1.15,2.05) 0.94(−0.58,2.49)

Note: IHD, ischemic heart disease; MI, myocardial infarction; COPD, chronic obstructive pulmonary disease. A quasi-Poisson regression with polynomial distributed
lag model (PDLM) was used to fit the community-specific relationship between PM2.5 constituents and cause-specific mortality. A univariate random effect meta-
analysis based on the approach of restricted maximum likelihood estimation was conducted to pool the effect estimates.
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time variable, 3–7 dfs for relative humidity and 3–7 dfs for mean
temperature (Supplementary Material Figures S3-S5).

4. Discussions

To our knowledge, this is the first nationwide study to evaluate the
impact of major PM2.5 constituents on cause-specific mortality in China.
These constituents were significantly associated with elevated risk of
non-accidental mortality at lag 0–3 day, with the highest estimates
observed for OC. Those with cardiovascular disease, the elderly and
people with less educational attainment were at higher risks of PM2.5

constituents. The harmful effects of NO3
- and +NH4were slightly higher in

the South, while those of EC were higher in the North.
In our study, the highest short-term impact on mortality has been

found for carbonaceous constituents, which is consistent with those
reported by others (Forouzanfar et al., 2015), and the mortality risk of
OC is higher than EC. Higher excess all-cause mortality caused by OC
was also found in Seoul, Korea and Xi’an, China (Heo et al., 2014;
Huang et al., 2012), but some other studies reported similar effects
between these two constituents (Yang et al., 2019b) or lower effect for
OC (Cakmak et al., 2009). Total OC concentrations are contributed by
both primary and secondary constituents, the latter of which could be
produced by the gas-to-particle conversion from volatile or semi-vola-
tile organic compositions (Liang et al., 2016). The emission sources of
primary OC and the properties of the secondary OC can greatly influ-
ence the toxicity of the mixture, and may partly explain the hetero-
geneity of the findings across study sites. We also found that the in-
crements of OC and EC were associated with excess cardiorespiratory
deaths, which are coherent with previous epidemiological findings
(Achilleos et al., 2017; Yang et al., 2019b). EC has been found to be
associated with ST-segment depressions in older adults with coronary
heart disease (Lanki et al., 2006). Increase of cardiovascular morbidity
were accompanied with the increase of EC on the same day and OC with
one day lag, while only OC was found to be related to hospital ad-
missions for respiratory diseases (Peng et al., 2009).

Furthermore, positive associations of SO4
2-, NO3

- and +NH4 with death
risks were also observed. The harmful toxicological responses elicited
by SO4

2-in the cardiorespiratory systems may be related to its direct and
indirect effects (Gwynn et al., 2000; Reiss et al., 2007). The acidic
property could directly induce airway hyper-responsivity, clearance
abnormalities and changes in lung function; or indirectly enhance the
absorption, formation and bioavailability of more toxic compounds.
Short term exposure to SO4

2-has also been found to be positively corre-
lated with biomarkers of oxidative stress, an important mechanism of
acute cardiovascular adverse events (Li et al., 2016). The underlying
biological mechanism for +NH4 is not well understood. +NH4 usually co-
exists with SO4

2-and NO3
- in the form of (NH4)2SO4, NH4NO3, and

NH4HSO4, and these constituents are highly correlated in our study.

Table 3
The pooled percentage change (% and 95%CI) in daily non-accidental mortality per IQR change in PM2.5 constituents at lag 0–3 day, stratified by individual
characteristics.

Variables EC OC SO4
2- NO3

- +NH4

Gender
Male 0.46(0.15,0.76) 1.42(0.89,1.95) 0.65(0.14,1.15) 0.72(0.01,1.44) 0.94(0.27,1.61)
Female 0.46(0.01,0.91) 1.43(0.76,2.10) 0.75(0.18,1.32) 0.68(−0.11,1.47) 0.92(0.20,1.64)

Age (years)
0–74 0.33(−0.07,0.74) 1.08(0.48,1.69) 0.36(−0.17,0.89) 0.37(−0.40,1.14) 0.49(−0.21,1.19)
75+ 0.59(0.18,1.01) 1.72(1.08,2.35) 0.94(0.35,1.54) 1.00(0.24,1.77) 1.30(0.56,2.06)

Education
Illiterate 0.38(−0.12,0.88) 1.48(0.74,2.24) 0.77(0.13,1.42) 1.22(0.34,2.10) 1.26(0.44,2.09)
Primary school and higher 0.57(0.14,1.00) 1.46(0.89,2.03) 0.64(0.1,1.19) 0.40(−0.33,1.13) 0.71(0.01,1.41)

Note: A quasi-Poisson regression with polynomial distributed lag model (PDLM) was used to fit the community-specific relationship between PM2.5 constituents and
mortality. A univariate random effect meta-analysis based on the approach of restricted maximum likelihood estimation was conducted to pool the effect estimates.
Stratification analysis was performed by individual characteristics.

Fig. 2. Percentage change (% and 95%CI) in daily non-accidental mortality per
IQR change in PM2.5 constituents at lag 0–3 day, stratified by region and ur-
ban–rural status. A quasi-Poisson regression with polynomial distributed lag
model (PDLM) was used to fit the community-specific relationship between
PM2.5 constituents and mortality. A univariate random effect meta-analysis
based on the approach of restricted maximum likelihood estimation was con-
ducted to pool the effect estimates.
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Also, the impact of NO3
-on mortality was not statistically significant

after adjusting for EC. Our results were comparable with previous
findings, which showed positive but nonsignificant effects of NO3

- (Heo
et al., 2014; Huang et al., 2012), especially on cardiovascular diseases
(Yang et al., 2019b).

Our results on the cause-specific risk, as well as the individual-level
effect modifiers, have important public health implications in identi-
fying the susceptible diseases and vulnerable populations. Among the
cardiorespiratory diseases studied, patients with myocardial infarction
were affected most by several constituents. Of note, due to the con-
sideration of the minimum sample size of daily deaths to ensure model
robustness, we only focused on the common causes of death. From the
perspective of prevention, the risk ratios we have estimated can help to
assess the reducible death burden by lowering the exposure levels of the
particle constituents studied. In addition, we found higher risk of
mortality due to constituents in older citizens and people with lower
educational attainment. The social inequality may be related to pre-
existing conditions, poor living and working environment, and hence
higher exposure to air pollutants, co-exposure to other risk factors such
as smoking and limited access to health care. Therefore, it involves
multi-sectoral efforts to reach out the disadvantaged population and
break the link between socioeconomic disparity and health inequity.
The effect modification by gender varied across previous studies. For
instance, Chen and colleagues observed higher risk of total PM2.5 in
females in China (Chen et al., 2017), but the opposite trend was re-
ported in the United States (Zeka et al., 2006). The reasons behind the
inconsistency in the gender-specific vulnerability to air pollutants re-
main unclear and warrant further studies.

One interesting finding of the present study is the higher mortality
risk for residents living in the South associated with NO3

- and +NH4 , but
higher risk in the North associated with EC. North and South regions
vary greatly in the source apportionment, concentration and proportion
of various constituents and weather conditions (Zhang et al., 2017),
which may influence the results on the health effects of the studied
constituents. For instance, the source contribution of coal and biomass
combustion is higher in the North, while the traffic emission contributes
more in the South (Zhang et al., 2017). Previous study confirmed that
the health effects of particulate matter constituents varied greatly by
their sources (Krall et al., 2017). Moreover, the complex interactions of
air pollutants, as well as their constituents, could possibly modify the
effect of each of them, which was confirmed in our results from the two-
pollutant models. As to the meteorological conditions, although we
have statistically adjusted for the potential confounding effects of
temperature and humidity, we couldn’t rule out the possibility of re-
sidual confounding, or the impact of other unmeasured meteorological
parameters.

Additionally, we observed consistently higher effect estimates of
PM2.5 constituents in urban areas than rural areas, although the dif-
ferences were not statistically significant. Direct comparison with pre-
vious studies on the urban-rural difference is limited, as there is no
quantitative evidence on assessing the health risks of PM2.5 constituents
by urban and rural status. This difference in susceptibility may be
contributed by two major mechanisms (O'Neill et al., 2003) – differ-
ential exposures (such as variations in the source apportionment of
PM2.5 constituents and in the distribution of co-exposures) and differ-
ential vulnerability (for instance, higher number of the elderly and
people with existing medical conditions in the urban areas may enlarge
the impact of PM2.5 constituents).

Our results add to those previously reported in several ways. To our
knowledge, only limited number of studies had evaluated the short-
term health impact of particle constituents in China (Huang et al., 2012;
Lin et al., 2016; Sun et al., 2019; Yang et al., 2019b), but they only
focused on highly developed cities. Our analyses addressed this gap by
estimating the differential toxicity of major constituents at the national
level, which can provide evidence for the national policy making, and
inform the priority in the air pollution control strategy. Additionally,

the associations with all-cause and broad categories of cardior-
espiratory mortality have been examined in a number of studies, but
few of them examined specific causes of death (Achilleos et al., 2017;
Yang et al., 2019b), which could provide more insights into the possible
biological mechanism of their health impact, and evidence on the tar-
geted population protection.

Some limitations should be noted in the present study. First, our aim
is not to conduct an exhaustive assessment of all air pollutants, and we
didn’t control for other air pollutants or constituents of PM2.5 due to
lack of data and the consideration of stability of the statistical models.
Second, we didn’t adjust for potential confounders such as smoking and
indoor air pollutants, but these factors may have minimum influence on
our results because they are unlikely to change on a day-to-day basis,
which is the time unit of measurement in our methodology to measure
the short-term effect. Third, due to lack of long-term time-series mon-
itoring data on PM2.5 constituents across mainland China, we used the
concentrations of PM2.5 constituents predicted by CMAQ approach.
Although these predicted PM2.5 constituent data have been validated by
the observed data from monitoring stations (Hu et al., 2016; Hu et al.,
2017b), uncertainties in the emission inventories and model specifica-
tions may cause potential bias in the exposure assessment. Fourth, si-
milar to most previous time-series studies (Huang et al., 2012; Li et al.,
2015; Liu et al., 2018; Sun et al., 2019), data on air pollutants and
weather variables were from population level instead of individual
level. Therefore, the exposure measurement may be subject to mis-
classification bias. However, this non-differential bias may lead to an
underestimate of the health risk of air pollution (Zanobetti and
Schwartz, 2009). Fifth, the ecological design of this study restrains us
from making inference on the causal relationship.

5. Conclusions

Our study implies that the major constituents of PM2.5 differ in the
mortality risk in the Chinese population. Our results highlight the im-
portance of controlling sources emitting carbonaceous constituents,
especially OC related activities. Along with the measures to monitor
and control air pollutants, the protection of vulnerable populations,
particularly those with susceptible diseases, should be incorporated in
the future strategic plans.
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