ELSEVIER

Contents lists available at ScienceDirect

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

Insight into the activity and SO_2 tolerance of hierarchically ordered $MnFe_{1-\delta}Co_{\delta}O_x$ ternary oxides for low-temperature selective catalytic reduction of NO_x with NH_3

Yonglong Li^{a,1}, Senyou Yang^{a,1}, Honggen Peng^{a,b,*}, Wenming Liu^a, Yangyang Mi^a, Zheng Wang^c, Changjin Tang^d, Daishe Wu^a, Taicheng An^b

- ^a College of Chemistry, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
- ^b Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- c State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China

ARTICLE INFO

Article history: Received 10 August 2020 Revised 26 December 2020 Accepted 29 December 2020 Available online 6 January 2021

Keywords:
Nitrogen oxides
Low-temperature selective catalytic
reduction
deNO_x
Hierarchically ordered catalysts
Ternary metal oxides

ABSTRACT

Manganese (Mn)-based mixed oxides are considered the most efficient catalysts for low-temperature ammonia selective catalytic reduction of nitrogen oxides (NO_x) (NH₃-SCR of NO_x). Water resistance and sulfur tolerance, especially the SO₂ tolerance of Mn-based catalysts, are the main obstacles preventing their practical application. Therefore, in this study, a series of cobalt (Co)-doped MnFeOx ternary mixed oxides catalysts with a hierarchically ordered structure (Hierc-MnFe_{1- δ}Co $_{\delta}$ O_x, δ = 0.2, 0.4 and 0.6) were developed and applied for NH₃-SCR of NO_x at low temperature. Compared with Hierc- $MnFeO_x$, $Hierc-MnFe_{1-\delta}Co_\delta O_x$ catalyst exhibited enhanced low-temperature activity and a broadened temperature window (NO₂ conversion above 80% was between 90 and 343 °C over Hierc- $MnFe_{0.6}Co_{0.4}O_x$), as well as better H_2O resistance and SO_2 tolerance. The enhanced low-temperature activity was attributed to a larger amount of active oxygen species, a higher proportion of Mn⁴⁺, Fe³⁺ and Co³⁺ content, and the improvement of surface acidity, which can facilitate the adsorption and activation of NO and NH₃. Additionally, the Hierc-MnFe_{0.6}Co_{0.4}O_x catalyst exhibited superior soot tolerance due to its special hierarchically ordered architecture. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) revealed that the Co-modified Hierc-MnFe_{1-δ}Co_δO_x ternary oxide catalyst could efficiently protect nitrate species on Hierc-MnFe_{0.6}Co_{0.4}O_x from the poisoning effect of SO₂, thereby boosting its SO₂ tolerance. This study provides a good candidate for low-temperature deNO_x application with enhanced SO₂ and soot tolerance.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Nitrogen oxides (NO_x , x=1,2) as one of the main atmospheric pollutants discharged from vehicle and industrial sources, which can lead to acid rain, haze, and photochemical smog [1–5]. The NH_3 selective catalytic reduction (NH_3 -SCR) of NO_x is a well-established method for elimination of NO_x due to its high activity

and selectivity and low cost [4,6–9]. Vanadium/titanium-based catalysts have been used successfully in practical applications for many decades. However, they still have some disadvantages, such as narrow operating temperature (300–400 °C), lower activity at low temperature, and overoxidation of ammonia to nitrous oxide (N_2O) at high temperature [3,10–14]. Due to the high operating temperature, the SCR unit is placed upstream of the electrofiltration and devulcanization units, which leads to the rapid deactivation of catalysts due to the presence of H_2O and SO_2 . To prevent or minimize their adverse impacts, it is possible to place $deNO_x$ catalysts downstream of the electrofilter and devulcanizer. However, the flue gas temperature will be too low to reach the working temperature window of the vanadium/titanium-based catalyst [15]. In addition, small amounts of particulate matter, such as soot, may

^d School of Environment, Nanjing Normal University, Nanjing 210023, China

^{*} Corresponding author at: College of Chemistry, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China.

E-mail address: penghonggen@ncu.edu.cn (H. Peng).

¹ These authors contributed equally to this work.

still exist in flue gas and can cover the active sites of the $deNO_x$ catalysts. Therefore, it is necessary to design and prepare vanadiumfree $deNO_x$ catalysts with excellent low-temperature (< 250 °C) activity and strong resistance to H_2O/SO_2 and particulate matter.

Currently, numerous vanadium-free transition metal or mixed metal oxide catalysts have been shown to be active for NH3-SCR of NO_x [16–19]. Manganese (Mn)-based catalysts have been investigated intensively due to their superior low-temperature performance [15,20-25]. However, pure Mn oxides (MnO_x) are readily poisoned by SO₂ and H₂O. In recent years, an increasing number of studies have shown that bimetallic Mn-Fe catalysts have fairly good performance in NH₃-SCR, but their low-temperature activity, especially their H₂O/SO₂ tolerance, is still unsatisfactory [15,22,26,27]. Recent studies have demonstrated that MnO_x properly doped with cobalt oxide (CoO_x) displays excellent catalytic performance and SO₂ tolerance, which are attributed to the synergistic effect of Co and Mn [28–31]. Additionally, the particle size of particulate matter (> 25 nm) is often greater than that of the pores of conventional deNO_x catalysts; thus, the surface-active sites can be covered readily, resulting in performance degradation.

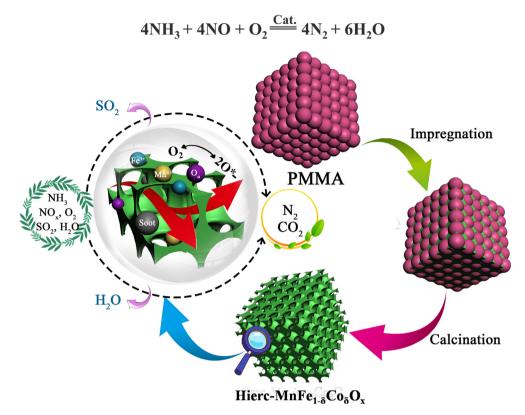
Materials with hierarchically ordered structure, such as threedimensional hierarchically ordered macroporous metal oxide catalysts with uniform large pore diameter (> 50 nm), have attracted a considerable amount of interest in environmental catalysis [32-35]. In this study, a series of Co-modified MnFeO_x with hierarchically ordered structure (Hierc-MnFe_{1- δ}Co_{δ}O_x, δ = 0.2, 0.4 and 0.6) were developed to overcome the various obstacles (including weak tolerance of H₂O, SO₂ and soot) preventing the practical application of Mn-based mixed metal oxides for low-temperature NH3-SCR of NO_x. Various techniques were adopted to investigate the effects of Co addition on the catalytic performance of the Hierc-MnFe₁₋ $_{\delta}Co_{\delta}O_{x}$ catalyst. Our results demonstrated that the Hierc-MnFe_{0.6}Co_{0.4}O_x catalysts have superior low-temperature activity, which can be attributed to its higher surface Mn⁴⁺ (and Fe³⁺, Co3+) concentration, larger ratio of surface chemical adsorption oxygen species, and greater acid amount. The SO₂/H₂O/soot tolerance and the reaction mechanism over the Hierc-MnFe_{0.6}Co_{0.4}O_x catalyst were also studied in detail. The Co-modified ternary oxide catalysts with hierarchically ordered structure developed in this work provide a good example for researchers in this field to design and synthesize high-performance low-temperature deNOx catalysts with improved H₂O, SO₂ and soot tolerance for practical applications. An illustration of the synthesis of the hierarchically ordered Hierc-MnFe_{1- δ}Co $_{\delta}$ O_x (δ = 0.2, 0.4 and 0.6) catalyst and its application in the NH₃-SCR of NO_x is displayed in Scheme 1.

2. Experimental

2.1. Catalyst preparation

2.1.1. Synthesis of Hierc-MnFe_{1- δ}Co_{δ}O_x (δ = 0.2, 0.4 and 0.6)

All reagents were analytical grade and used as received without further purification. Homogeneously dispersed polymer nanospheres (polymethyl methacrylate, PMMA) were synthesized according to a method described elsewhere [36]. In a typical synthesis of Hierc-MnFe $_{0.6}\text{Co}_{0.4}\text{O}_x$, 2.0 g (0.1538 mmol) of F127 surfactant (from Sigma-Aldrich, 99%) and 4.0 g (19.0349 mmol) of citric acid monohydrate (from Aladdin, 99.5%) as mixture were added to an ethylene glycol (from Xilong Scientific, 99%) and methanol (from Xilong Scientific, 99.5%) solution (40 vol%) and stirred for 2 h to form a uniform precursor solution. Then 50 mmol Mn (NO3)2 (50 wt%, from Macklin), 30 mmol Fe(NO3)3·9H2O (from Xilong Scientific, 98.5%), and 20 mmol Co(NO3)2·6H2O (from Xilong Scientific, 98.5%) were dissolved in the solution to obtain a transparent solution under vigorous stirring at 35 °C for 5 h. The total


metal concentration for each precursor solution was 2 mol L $^{-1}$. The PMMA nanospheres were soaked for 6 h in the above solution; after the PMMA template was fully impregnated, vacuum filtration was carried out to remove the excessive metal precursor solution. The precipitates were dried at 50 °C in a vacuum oven for 48 h and first calcined at 310 °C in N_2 for 4 h, and then calcined in a tube furnace at a rising rate of 1 °C min $^{-1}$ to 550 °C in air and held for 5 h to remove the PMMA hard template and the F127 soft template. Afterwards the desired Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_{0.8}$ was obtained. According to the same procedure, Hierc-MnFe $_{1-\delta}$ Co $_{\delta}$ O $_{0.8}$ catalysts with various Co content were prepared, and the molar ratio Mn: Fe:Co was fixed at 1:1- δ : δ (δ = 0.2, 0.4 and 0.6). Pure Hierc-MnO $_{0.8}$, Hierc-FeO $_{0.8}$, Hierc-CoO $_{0.8}$ and Hierc-MnFeO $_{0.8}$ were also synthesized using the same method.

2.1.2. Synthesis of Con-MnFe_{0.6}Co_{0.4}O_x catalysts

For comparison, an $MnFe_{0.6}Co_{0.4}O_x$ catalyst without a hierarchical ordered structure was also prepared by the conventional method (denoted as $Con-MnFe_{0.6}Co_{0.4}O_x$). Typically, proper amounts of $Mn(NO_3)_2$, $Fe(NO_3)_3\cdot 9H_2O$, and $Co(NO_3)_2\cdot 6H_2O$ precursors were mechanically mixed to form a homogeneous solution; then the complexing agent was dried and calcined, and the procedures used were the same as above.

2.2. Catalyst characterization

Various characterization techniques were adopted to measure the physicochemical performance of Hierc-MnFe_{1- δ}Co $_{\delta}$ O_x (δ = 0.2, 0.4 and 0.6) and related catalysts. Field-emission scanning electron microscopy (SEM) images, transmission electron microscopy (TEM) images, and elemental mapping images were obtained using a JEOL 3000F TEM working at 300 kV equipped with an energydispersive spectroscopy (EDS) detector. X-ray diffraction (XRD) patterns were recorded on a Bruker AXS D8Focus diffractometer that operated at 40 kV and 30 mA with a Cu target and Kα-ray irradiation (λ = 1.54178 Å). Scans were collected in the 20 range from 10° to 80° with a step of 2° min⁻¹ to analyze the phase structure. Nitrogen adsorption-desorption analysis was carried out at 77 K on a Micromeritics ASAP2020 instrument. The specific surface areas of the samples were calculated using the Brunauer-Emmet t-Teller (BET) method. The pore size distributions of the samples were calculated according to the Barrett-Joyner-Halenda (BJH) method. The average pore sizes of the samples were obtained from the peak positions of the distribution curves. X-ray photoelectron spectroscopy (XPS) was performed on a PHI 5000 Versa Probe high performance electron spectrometer using monochromatic aluminum $K\alpha$ radiation (1486.6 eV) at an accelerating power of 15 kW. Before the measurement, the sample (50 mg) was treated in an O₂ flow of 20 mL min⁻¹ at 200 °C for 1 h; then the sample was outgassed at room temperature in a UHV chamber $(1.0 \times 10^{-9} \text{ Torr})$. The sample charging effects were compensated for by calibrating all binding energies (BE) with the adventitious C 1s peak at 284.5 eV. The BE values of Fe 2p, Mn 2p, Co 2p and O 1s were calibrated against the C 1s signal (BE = 284.5 eV) of contaminant carbon. Temperature-programmed reduction by hydrogen (H2-TPR) was carried out on a FINESORB 3010C instrument in a 30 mL min⁻¹ 10% H₂-Ar gas flow, with the temperature increased from room temperature to 950 °C at 10 °C min⁻¹ after pretreatmen at 300 °C for 30 min in flowing N₂. Generally, 50 mg of catalyst was used for this test. Temperature-programmed desorption of NH₃ (NH₃-TPD) was carried out via a Micromeritics ASAP 2920. After the samples were pretreated in pure Ar at 400 °C for 1 h, the adsorption of NH₃ was conducted at 50 °C for 1 h, followed by purging with Ar. Finally, the samples were heated from 50 to 500 °C with a ramping rate of 10 °C min⁻¹. The reaction mechanism was studied by in situ DRIFT measurement on a Fourier trans-

Scheme 1. Illustration of the hierarchically ordered Hierc-MnFe_{1- δ}Co_{δ}O_x (δ = 0.2, 0.4 and 0.6) catalyst: synthesis and application in NH₃-SCR of NO_x-

form infrared spectrometer (Bruker Tensor 27) equipped with a Pike DRIFT cell (DiffusIR) and a mercury cadmium telluride (MCT) detector cooled by liquid nitrogen. For each test, the samples were pretreated for 60 min in a N_2 flow at 400 °C and cooled to target temperature under N_2 flow. All DRIFT spectra were recorded by accumulating 64 scans, at a resolution of 4 cm $^{-1}$, as a function of time. Gas flow was controlled by a gas mass controller (Sevenstar, China) and the gas feeds used for the experiment were a mixture of 500 ppm of NH $_3/N_2$, 500 ppm of NO + 5% O_2/N_2 and 100 ppm of SO $_2$ + 5% O_2/N_2 when used.

2.3. Catalytic and kinetic tests

The deNO_x performance of the as-prepared catalysts was evaluated on a fixed-bed tubular quartz system (ID = 6 mm). The feed gas mixture contained 500 ppm of NO, 500 ppm of NH₃, 5% of O_2 , 5% of H_2O (when used), 100 ppm of SO_2 (when used), and N_2 as balance gas with a total flow rate of 100 mL min⁻¹, and the weight hourly space velocity (WHSV) was set at 60,000 mL g_{cat}^{-1} h^{-1} . Prior to the measurement of activity, 100 mg of catalyst was swept using a flow of 100 mL min⁻¹ N₂ at 300 °C for 1 h to remove the physisorbed H₂O; then the background infrared (IR) spectrum of the reactor effluent was recorded under nitrogen at room temperature. Thereafter, the IR spectra of the effluent of the reactor simulated feed were recorded for half an hour. Catalytic activity performance measurements were conducted by heating the fixed bed at a rate of 3 °C min⁻¹. The composition and concentration of the outlet gas were continually monitored by Fourier transform infrared (FT-IR) spectroscopy using a Nicolet Antaris IGS-Gas Analyzer (Thermo Fisher Scientific, Waltham, MA) equipped with a 2m length gas cell.

The conversion of NO_x and selectivity for N_2 were calculated according to the equations

$$X_{\text{NO}_x} = \left(1 - \frac{[\text{NO}_x]_{\text{outlet}}}{[\text{NO}_x]_{\text{inlet}}}\right) \times 100\%,\tag{1}$$

$$\begin{split} N_{2} selectivity &= \left(1 - \frac{2[N_{2}O]_{outlet}}{[NO_{x}]_{inlet} - [NO_{x}]_{outlet} + [NH_{3}]_{inlet} - [NH_{3}]_{outlet}}\right) \\ &\times 100\%, \end{split}$$

where X_{NO_x} is the conversion of NO_x at a certain temperature (%), $[NO_x] = [NO] + [NO_2]$, and $[NO_x]_{inlet}$ and $[NO_x]_{outlet}$ are the inlet and outlet gas concentrations of NO_x , respectively.

The kinetic performance of Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_{x}$ and related catalysts was evaluated by calculating the apparent activation energy (E_a) and turnover frequency (TOF) for NO_x conversion. The NH₃-SCR kinetic measurements over different as-prepared catalysts were conducted in a quartz reactor. To that end, a sample of 25 mg of the catalyst and 75 mg of inert quartz sand (40–60 mesh) were packed in a quartz tube (ID 6 mm). The reaction gases contained 500 ppm of NO, 500 ppm of NH₃, 5% O₂, and N₂ as balance gas, with a total flow rate of 400 mL min⁻¹; the WHSV was fixed at 960,000 mL $g_{cat.}^{-1}\ h^{-1}$; and the NO_x conversion rate was kept at less than 10%. Low conversion of NO_x and the absence of mass and heat transfer limitations ensure the reaction in the kinetic region. (The influences of mass transport limitation and heat transfer were excluded by calculating the Weisz-Prater criterion and the Mears criterion, respectively [37–39]. The detailed calculations are shown in the Supporting Information.) The normalized reaction rate, R_{NO_x} (mol $g_{cat.}^{-1}$ s⁻¹), was calculated using the formula

$$R_{\text{NO}_x} = \frac{X_{\text{NO}_x} V}{m_{\text{cat.}}},\tag{3}$$

where V is the gas flow rate (mol s⁻¹) of NO_x and $m_{\text{cat.}}$ is the mass weight of the sample. The apparent activation energy (E_a, in kJ

mol⁻¹) can be obtained from the Arrhenius plots of the reaction rate. In addition, the turnover frequency (TOF) value (based on active species, such as Mn, Fe and Co) per second was used to compare the intrinsic catalytic activity of the catalysts [40]. The calculation equations are

$$TOF = \frac{\nu \times X_{NO_x}}{V_m \times n_{(Mn+Fe+Co)-surf.}}, \tag{4} \label{eq:toff}$$

where v is the flow rate of NO_x (m^3 s⁻¹); V_m is the gas molar constant (m^3 mol⁻¹); and $n_{(Mn+Fe+Co)-surf.}$ is the total mole number of atoms on the surfaces of catalysts (mol), which is estimated from the N_2 adsorption/desorption and XPS data,

$$n_{(Mn+Fe+Co)-surf.} = \frac{N_{(Mn+Fe+Co)-surf.}}{N_A}, \tag{5}$$

$$N_{(Mn+Fe+Co)-surf.} = N_{Mn-surf.} + N_{Fe-surf.} + N_{Co-surf.},$$
 (6)

where $N_{(\text{Mn+Fe+Co})-\text{surf.}}$ is the number of atoms on the surfaces of catalysts and N_{A} is the Avogadro constant $(6.02 \times 10^{23} \text{ mol}^{-1})$.

The calculation formulas for $N_{(Mn+Fe+Co)-surf.}$ are

$$m \cdot S_{BET} = S_{Mn-surf.} + S_{Fe-surf.} + S_{Co-surf.} + S_{O-surf.}$$

$$= N_{\text{Mn-surf.}} \cdot S_{\text{Mn-single}} + N_{\text{Fe-surf.}} \cdot S_{\text{Fe-single}}$$

$$+N_{\text{Co-surf.}} \cdot S_{\text{Co-single}} + N_{\text{O-surf.}} \cdot S_{\text{O-single}},$$
 (7)

where m (g) is the mass of catalysts used for XPS analysis (50 mg); $S_{\rm BET}$ (m² g⁻¹) is the surface area of catalysts (Table S2 in the Supporting Information); and $S_{\rm Mn-single}$ (m²), $S_{\rm Fe-single}$ (m²), $S_{\rm Co-single}$, and $S_{\rm O-single}$ (m²) are the surface areas of single atoms, which were estimated by the hemispheric surface area ($2\pi r^2$). The atomic radii employed for Mn, Fe, Co and O are as follows:

$$r_{\text{Mn}} = 1.24 \times 10^{-10} \text{ m}, \ r_{\text{Fe}} = 1.289 \times 10^{-10} \text{ m},$$

 $r_{\text{Co}} = 1.253 \times 10^{-10} \text{ m}, \text{ and } r_0 = 6.4 \times 10^{-11} \text{ m}.$

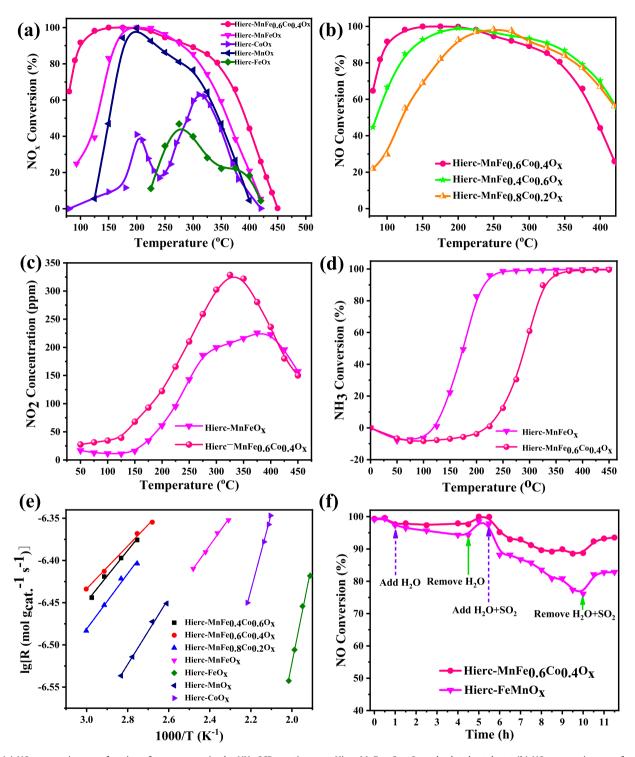
The relationship between $N_{\text{Mn-surf.}}$, $N_{\text{Fe-surf.}}$ and $N_{\text{Co-surf.}}$ was calculated based on the XPS analysis results; relevant values are listed in Table S3.

The evaluation of the soot resistance capacity was also undertaken in the same quartz reactor. Commercially obtained Printex-U (diameter ~25 nm, purchased from Degussa) was chosen as model particulate matter (soot). Typically, the as-prepared catalyst (100 mg) and soot (10 mg) were mixed at a weight ratio of 10:1 with a spatula to duplicate the loose contact condition. The detailed reaction measurement procedures were similar to those described above.

3. Results and discussion

3.1. Catalytic performance

The performance of Hierc-MnFeO $_x$, Hierc-MnFeO $_6$ CO $_0.4$ O $_x$, and three pure metal oxide catalyst for $deNO_x$ is displayed in Fig. 1a. The pure Hierc-FeO $_x$ catalyst exhibited the worst $deNO_x$ performance, as only 40% NO $_x$ conversion was achieved at 300 °C. The $deNO_x$ activity was also poor in the presence of Hierc-CoO $_x$, yielding 63% NO $_x$ conversion at around 310 °C. Intriguingly, Hierc-CoO $_x$ showed a second peak in its activity curves (centered at 310 °C), which is consistent with previous studies suggesting that this catalyst follows different reaction mechanisms in different temperature windows [41,42]. However, Hierc-MnO $_x$ showed better activity than Hierc-FeO $_x$ and Hierc-CoO $_x$, achieving above 80% NO $_x$ conversion over a narrow temperature window from 175 to 275 °C. The Hierc-MnFeO $_x$ catalyst exhibited better low-temperature activity with a wider temperature window than


Hierc-MnO_x. Remarkably, the NO_x conversion was greatly improved after the doping of Co into Hierc-MnFeO_x. The Hierc-MnFe_{0.6}Co_{0.4}O_x, in particular, with an Fe/Co molar ratio of 6 to 4, showed the best deNO_x activity, especially low-temperature activity, in which its 100% NO_x conversion was as low as 150 °C and its temperature window (NO_x conversion > 80%) ranged from 90 to 343 °C. With increasing cobalt species doping amount, the activity decreased but was still higher than that of Hierc-MnFeO_x (Fig. 1b). There is an optimal amount of cobalt doping for Hierc-MnFe_{1-δ}Co_δO_x ternary oxide catalysts, and excessive Co doping was not conducive to enhance its NH₃-SCR activity. It should be noted that hierarchically ordered Hierc-MnFe_{0.6}Co_{0.4}O_x exhibited enhanced performance compared with conventional MnFe_{0.6}Co_{0.4}-Ox without an ordered hierarchical structure (Fig. S1), which could be ascribed to the ordered porous structure that could promote the transportation of the reactants and products.

To achieve the fully significant effects of cobalt in the Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_x$ catalyst, separate NO oxidation (500 ppm of NO + 5% of O $_2$) and NH $_3$ oxidation (500 ppm of NH $_3$ + 5% of O $_2$) reactions were performed. As shown in Fig. 1c, the concentration of NO $_2$ concentration over Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_x$ was evidently far higher than that over Hierc-MnFeO $_x$ in the whole temperature range. It has been reported that if the SCR catalysts could produce a fraction of NO $_2$ in situ from NO oxidation at low temperature, the low-temperature SCR activity would be increased via the "fast SCR" process in Eq. (8) [43].

$$2NO + 2NO_2 + 4NH_3 = 4N_2 + 6H_2O. (8)$$

 NO_2 is a better oxidizing agent than O_2 ; NO_2 reacts directly with the reduced site, resulting in a higher rate for the fast SCR reaction at low temperatures [44–46].

In the actual SCR reaction, the surface reaction between nitrate species and NH₃ adsorbed species is dominant in the SCR reaction; therefore, Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_{x}$ has a higher NO oxidation ability, which accounts for its better low-temperature NH3-SCR activity than that of Hierc-MnFeO_x. Moreover, the processes of NH₃ activation and oxidation are vital for the NH₃-SCR reaction, and the relevant results of NH₃ oxidation are shown in Fig. 1d, where the NH₃ oxidation activity over Hierc-MnFe_{0.6}Co_{0.4}O_x is much lower than that over Hierc-MnFeO_x. For the Hierc-MnFe_{0.6}Co_{0.4}O_x catalyst, the NH₃ oxidation started at ~225 °C, but approximately total conversion (~96%) of NH₃ could be accomplished at the same temperature over the Hierc-MnFeO_x catalyst. This indicates that the introduction of cobalt into Hierc-MnFeO_x can effectively suppress NH₃ oxidation, which accounted for its superior catalytic activity and excellent N₂ selectivity. Meanwhile, as the other important indicators of catalytic performance, as shown in Fig. S2a, N₂ selectivity was provided, suggesting that the introduction of cobalt could also suppress the side reactions in the NH₃-SCR process. Hierc-MnFe_{0.6}Co_{0.4}O_x had higher N₂ selectivity than the Hierc-MnFeO_x catalyst, and its N₂ selectivity was about 80% even when the reaction temperature reached 300 °C. The N2 selectivity for Hierc-MnFeO_x was only 70% at 300 °C. Furthermore, Hierc- $MnFe_{0.6}Co_{0.4}O_x$ was more conducive to the reaction of ammonia in the NH₃-SCR process (Fig. S2b). The conversion of NO to NO₂, N₂O, and N₂ is shown in Fig. S3, and the results were consistent with the better N₂ selectivity over the Hierc-MnFe_{0.6}Co_{0.4}O_x catalyst. The above results suggested that Co doping had a major effect in enhancing the performance of the Hierc-MnFe_{0.6}Co_{0.4}O_x catalyst in the NH₃-SCR reaction. Further study of the catalytic stability over Hierc-MnFe_{0.6}Co_{0.4}O_x at 165 °C revealed, as shown in Fig. S4a, a decrease of only 4% conversion throughout the continuous 20 h of testing. It should be noted that when the heating steps in the testing method are changed (first, the temperature increased to 450 °C, and then decreased to room temperature, and ultimately increased to 450 °C again), a smooth curve is also obtained. This Y. Li, S. Yang, H. Peng et al. Journal of Catalysis 395 (2021) 195-209

Fig. 1. (a) NO_x conversion as a function of temperature in the NH_3 -SCR reaction over Hierc- $MnFe_{0.6}Co_{0.4}O_x$ and related catalysts; (b) NO_x conversion as a function of temperature in the NH_3 -SCR reaction over Hierc- $MnFe_{0.6}Co_{0.4}O_x$ and Hierc- $MnFe_{0.6}Co_{0.6}O_x$ catalysts; (c) The separate NO oxidation reactions results over Hierc- $MnFe_{0.6}Co_{0.4}O_x$ and Hierc- $MnFe_{0.6}Co_{0$

clearly indicated that the catalyst did not change with temperature (Fig. S4b). The above two experimental results indicated that Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_x$ had excellent thermal stability.

The apparent E_a of a catalytic reaction is an important parameter to assess an industrial catalyst [47,48]. Therefore, the reaction kinetics of the as-prepared samples for SCR of NO_x with NH_3 were studied before the heat and mass transfer limits were excluded (confirmed by the Weisz–Prater criterion and the Mears criterion calculation;

see the Supporting Information). The Arrhenius curves and activity curves at high space velocity are shown in Fig. 1e and Fig. S5, respectively. The E_a and TOF values are listed in Table S1. These results indicated that mono-metal oxides and MnFeO_x catalysts had a higher E_a value than that of the ternary MnFe_{1- δ}Co $_\delta$ O_x catalysts, while the Hierc-MnFe_{0.6}Co_{0.4}O_x catalyst had the lowest E_a value, indicating that the addition of Co into Hierc-MnFeO_x effectively reduced the E_a and enhanced the deNO_x performance. Also, the higher TOF values

of Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_{x}$ than that of Hierc-MnFeO $_{x}$ further confirm the excellent low-temperature deNO $_{x}$ efficiency of the former.

In practical applications, the flue gases often include small amounts of H₂O and SO₂, which result in poisoning and deactivation of deNOx catalysts. Accordingly, investigating the effect of H₂O/SO₂ is critical in the use of deNO_x catalysts. The influence of $\rm H_2O$ and $\rm SO_2$ on Hierc-MnFe $\rm O_{0.6}Co_{0.4}O_x$ and Hierc-MnFeO $_x$ was evaluated at 180 °C. The results, displayed in Fig. 1f, revealed that the activity decreased slowly after 5 vol% H2O was introduced over Hierc-MnFe_{0.6}Co_{0.4}O_x, which can be attributed to the comparative adsorption of NH₃ and H₂O [49,50]. It was also noticed that Hierc-MnFeOx had a large sharp decrease in activity compared with Hierc-MnFe_{0.6}Co_{0.4}O_x. Additionally, the NO_x conversion returned to about 98% soon after the H₂O was removed, suggesting the strong H₂O tolerance of Hierc-MnFe_{0.6}Co_{0.4}O_x. Furthermore, the evaluation of the effect of the co-presence of SO₂ and H₂O revealed that the catalyst activity apparently decreased over the Hierc-MnFeO_x catalyst, noticeably, the NO_x conversion declined from 98% to 76%. However, the decline was slight over Hierc-MnFe_{0.6}Co_{0.4}O_x, in which the NO_x conversion only declined from 99% to 88%. The deactivation over Hierc-MnFe_{0.6}Co_{0.4}O_x and Hierc-MnFeO_x was mainly attributed to the deposition of sulfate species, such as NH₄HSO₄, (NH₄)₂SO₄, and metal sulfates [12]. When the addition of H₂O and SO₂ were turned off, the NO_x conversion over Hierc-MnFeO_x and Hierc-MnFe_{0.6}Co_{0.4}O_x could be partially recovered to 82% and 93%, respectively. The above results indicated that the H₂O tolerance, and especially the SO₂ tolerance of the catalyst could be enhanced significantly by the doping of the cobalt into the MnFeO_x catalyst. The resistance to water vapor and sulfur dioxide tests were further performed at lower temperature (120 °C), as shown in Fig. S6, adding cobalt into Hierc-MnFeO_x could effectively retard the sulfur poisoning, however, the performance of resistance to SO₂ needs to be further improved at 120 °C.

Since the soot emitted from flue gases can cover the active sites of the deNO_x catalyst, the soot resistance performance was tested using a commercial soot nanoparticle as a model (~25 nm). The results presented in Fig. 2 clearly showed a sharp decrease in deNO_x activity over the mixture of the carbon and the Con-MnFe_{0.6}Co_{0.4}O_x catalyst without a hierarchically ordered structure prepared by the conventional method. However, the NO_x conversion-temperature curve from 150 to 250 °C over Hierc-MnFe_{0.6}Co_{0.4}O_x was almost coincident even though the soot was added to the catalyst. These results revealed that the Hierc-MnFe_{0.6}Co_{0.4}O_x had excellent soot resistance compared with Con-MnFe_{0.6}Co_{0.4}O_x due to its special hierarchically ordered structure, which might prevent the impact of the carbon covering the surface-active sites with carbon. Noticeably, after soot was introduced, the deNO_x activity at high temperature was enhanced for both $Con-MnFe_{0.6}Co_{0.4}O_x$ and $Hierc-MnFe_{0.6}Co_{0.4}O_x$. Additional experiments were conducted to investigate the cause of the enhanced activity. As shown in Fig. S7, in the absence of NH₃, the concentration of NO_x decreased gradually and reached a minimum at about 400 °C, and simultaneously, the concentration of CO₂ increased and reached a maximum at about 400 °C. As the temperature increased further, the concentration of NO_x increased and ultimately reached a plateau, while the concentration of CO2 declined and eventually became completely undetectable. Thus, the overall chemical reaction equation could be written as

$$3C + 4NO + O_2 = 2N_2 + 3CO_2 \tag{9}$$

Additionally, as shown in Fig. S8, in the absence of NH $_3$ and O $_2$, the conversion of NO $_x$ was gradually increased at 300–650 °C, while the conversion of NO $_x$ increased rapidly with the increasing temperature, ultimately 97% NO $_x$ conversion was achieved at 800 °C. It is worth noting that the CO $_2$ concentration increased concurrently. Also, a blank test was performed to elucidate the proba-

bility of NO_x decomposition at high reaction temperature, and it was found that the NO_x could not be decomposed even as the temperature increased to 850 °C. Therefore, the general chemical reaction equation was determined to be

$$2C + 4NO = 2N_2 + 2CO_2. (10)$$

The above results demonstrated that the soot particles could act as a reductant to reduce NO_x over Hierc-MnFe $_{0.6}Co_{0.4}O_x$ and eventually led to the improvement of the high-temperature $\textit{de}NO_x$ performance. Remarkably, from another perspective, in this work, it was possible to remove NO_x and soot simultaneously.

3.2. Scanning electron microscopy and transmission electron microscopy analysis of the catalysts

The morphology and hierarchically ordered structure of Hierc-MnFe_{0.6}Co_{0.4}O_x and the related catalysts were confirmed by scanning electron microscopy (SEM). The image shown in Fig. S9 indicated that the as-synthesized PMMA nanospheres with particle size about 210 nm had been successfully prepared and thus they were used as a hard template to synthesize the hierarchically ordered catalysts. The representative SEM images of the catalysts displayed in Fig. 3 revealed that all the as-prepared catalysts exhibited a high-quality hierarchically ordered structure with a macropore size of 110-140 nm. The macropores were connected by small windows in a highly ordered way. These results suggested that the hierarchically ordered structure was achieved by PMMA microspheres as the hard template. Noticeably, compared with the initial particle size (210 nm) of PMMA nanospheres, the diameter of these macropores decreased to 110-140 nm owing to the melting of PMMA and the aggregation of the generated metal oxides during the calcination process [51,52]. Additionally, the SEM images of Con-MnFe_{0.6}Co_{0.4}O_x presented in Fig. S10 clearly show that it did not have any macropores. Due to the special hierarchically ordered structure of Hierc-MnFe_{0.6}Co_{0.4}O_x, the soot particulates can reach to the macropores, and they had a good connection with the active sites, ultimately leading to clearly enhanced soot resistance performance.

Transmission electron microscopy (TEM) was performed to examine the morphology and structure of a typical sample (Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_x$; Fig. 4a–b). It is evident from the TEM image that the Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_x$ catalyst has a uniform high quality hierarchically ordered structure, which is consistent with the SEM analysis. The high angle annular dark-field scanning TEM (HAADF-STEM) image and the corresponding elemental energy-dispersive X-ray spectroscopy (EDS) mapping images of the Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_x$ catalyst presented in Fig. 4c–f indicated that Mn, Fe and Co were uniformly dispersed in the hierarchically ordered catalyst.

3.3. Crystal and textural structure of catalysts

X-ray diffraction (XRD) patterns of the as-prepared catalysts are displayed in Fig. 5 and Fig. S11. All the Bragg diffraction peaks in the 2θ range of $10^\circ-80^\circ$ could be well indexed. The pure Hierc-FeOx showed a typical hexagonal crystalline structure (PDF#33-0664), while Hierc-CoOx showed a cubic Co3O4 crystalline structure (PDF#43-1003). For pure Hierc-MnOx, two crystal phases, namely Mn3O4 and Mn2O3, could be observed. Regarding the Hierc-MnFeOx catalyst, both the Fe2O3 and Mn2O3 crystal phases could be detected. However, in addition to a normal Mn3O4 crystal phase, a special crystal phase, specifically CoFe2O4, was found in Hierc-MnFe1- $_5$ CO $_5$ Ox (δ = 0.2, 0.4 and 0.6) catalysts. This means that a strong interaction occurred in Co and Fe species, which might be one of the reasons for the enhanced activity after cobalt was added into MnFeOx oxides.

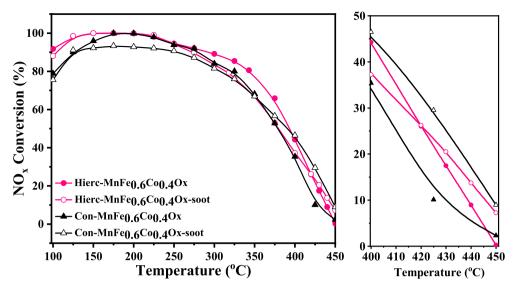


Fig. 2. Soot tolerance over Hierc-MnFe_{0.6}Co_{0.4}O_x and Con-MnFe_{0.6}Co_{0.4}O_x catalysts.

The textural properties are one of the main factors affecting the catalytic activity. Thus, the textural properties were measured by the N_2 adsorption/desorption technique. As shown in Fig. 6A, all the catalysts exhibited a typical type IV isotherm with an H3 hysteresis loop, indicating the formation of mesopores [53], and the average mesopore sizes estimated according to the BJH pore sizes of the samples (Fig. 6B) were in the range 8–11 nm. The specific surface area, pore volume, and pore diameter are listed in Table S2. The specific surface area of Hierc-MnFe_{1-\delta}Co_{\delta}O_x catalysts (\delta = 0.2, 0.4 and 0.6) is lower than that of monometal oxides, implying that their surface area was not the decisive effect on activity.

3.4. X-ray photoelectron spectroscopy of catalysts

XPS analysis was performed to determine the surface composition and valence state of the metal species. The Mn 2p, Fe 2p, Co 2p and O 1s spectra are displayed in Fig. 7. For Fe-containing catalysts, the main peak, corresponding to Fe $2p_{3/2}$ (~711 eV), can be fitted into two characteristic peaks, namely the peaks located at binding energies (BEs) of 710.6 and 712.7 eV, which could be assigned to Fe²⁺ and Fe³⁺, respectively [54]. It has been reported that Fe³⁺ species have better catalytic performance than Fe²⁺ species, which is advantageous for adsorbing NH3 and promoting the reduction of NO_x [55]. Based on the data in Table S3, it could be concluded that the Fe³⁺ ratio increased after cobalt was doped into Hierc-MnFeO_x. Using the peak-fitting deconvolution technique, the Mn 2p_{3/2} spectra located at BE ~ 642 eV could be fitted into three characteristic peaks, specifically at BE \sim 640.7, 642.2 and 643.9 eV, which are ascribed to Mn²⁺, Mn³⁺ and Mn⁴⁺, respectively [25]. Additionally, the Co 2p spectra of six Co-containing catalysts are shown. The peak of Co $2p_{3/2}$ at a BE of ~781 eV could be separated into two peaks (780.5 and 781.8 eV), which are assigned to the Co3+ and Co²⁺ species, respectively [56]. According to the data in Table S3, the atomic proportion of Mn^{4+}/Mn_{total} in Hierc-MnFe_{0.6}Co_{0.4}O_x is 32%, which is much higher than that in Hierc-MnFeO_x (20%). It is widely established that the abundant Mn⁴⁺ species are advantageous to the low-temperature redox ability on Mn-based catalysts. Mn⁴⁺ ions usually play an irreplaceable part in the oxidation of NO, which could enhance the low-temperature NH₃ SCR performance via the "fast SCR" process on the basis of the general reaction shown in Eq.(8) [57,58]. Moreover, Hierc-MnFe_{0.6}Co_{0.4}O_x had a higher ratio of Co³⁺/Co than Hierc-MnFe_{0.8}Co_{0.2}O_x and Hierc-MnFe_{0.4}Co_{0.6}O_x, and the main forms of Co were different, Co mainly existed in the form Co2+ (CoFe2O4) in the bulk based on XRD

results; however, it mainly existed in the form with +3 valence on the surface of the catalyst. According to the above results, it is reasonable to assume that Co3+ species play a key role in the improvement of the deNO_x performance, as they could bring excess surface oxygen and enhance gas molecular adsorption [59,60]. The O 1s spectra of all the catalysts can be divided into two different O species, namely O_{α} and O_{β} . Based on previous studies, the peaks at the low BE of \sim 530 eV (O_B) and high BE of \sim 532 eV (O_C) were assigned to the lattice oxygen and the surface-active oxygen species, respectively [61,62]. The ratio of $O_{\alpha}/(O_{\alpha} + O_{\beta})$ increased after cobalt was added into Hierc-MnFeOx, which was obtained from the peak areas and the proportions of O_{α} and O_{β} . It is generally accepted that the surface-active O species are more beneficial than the lattice O species. The existence of more surface-adsorbed active oxygen species was beneficial to oxidation of NO to NO2 and adsorption of NH₃ due to its high mobility [63]. Common knowledge holds that the adsorption of NH3 is the first process in the deNO_x reaction. Ultimately, the improvement of NO oxidation and NH₃ adsorption over Hierc-MnFe_{1- δ}Co $_{\delta}$ O_x catalysts should be one of the main reasons for the increase of the catalytic activity. Based on the above results, a redox cycle for the NH₃-SCR reaction at low temperatures over the novel Hierc-MnFe_{1- δ}Co $_{\delta}$ O $_{x}$ catalysts can be proposed, as shown in Fig. 8 (where M and N represent two different metal elements). During the NH₃-SCR reaction, O₂ can obtain an electron from M^{n+} (where M^{n+} represents Fe^{2+} , Co^{2+} , Mn^{2+} and Mn^{3+}) to form O^- and $M^{(n+1)+}$. Also, NO can transfer an electron to $M^{(n+1)+}$ to form NO^+ and M^{n+} . The activation of NOand O_2 might be expressed as shown in Eqs. (11) and (12)

$$\frac{1}{2}O_2 + M^{n+} \rightarrow O_{ads}^- + M^{(n+1)+}, \eqno(11)$$

$$NO + M^{(n+1)+} \rightarrow M^{n+} + NO_{ads}^{+},$$
 (12)

and NO₂ is formed as depicted in Eq. (13) [17,22]

$$O_{ads}^- + NO_{ads}^+ \rightarrow NO_2. \tag{13}$$

3.5. H₂ temperature-programmed reduction and NH₃ temperature-programmed desorption analysis of catalysts

To investigate the reducibility of Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_x$ and related catalysts, temperature-programmed reduction by hydrogen (H $_2$ -TPR) tests were performed, as shown in Fig. 9a. According

Y. Li, S. Yang, H. Peng et al. Journal of Catalysis 395 (2021) 195–209

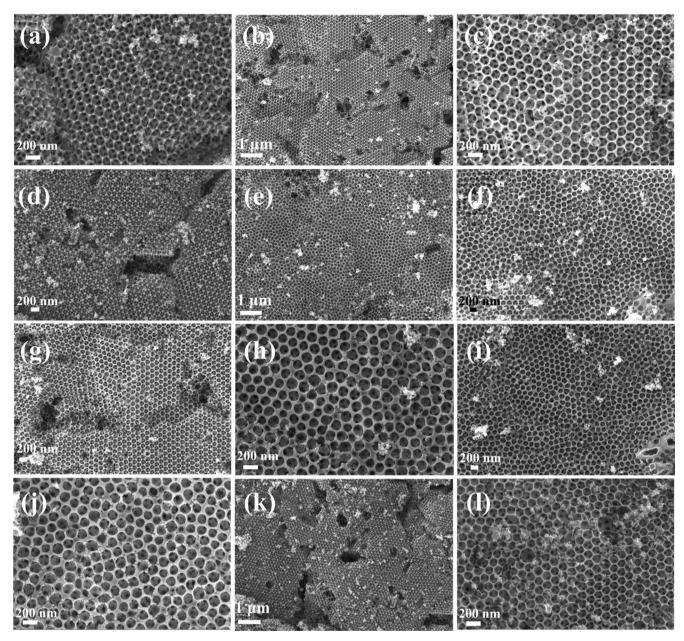


Fig. 3. SEM images of Hierc-MnFe $_{0.8}$ Co $_{0.2}$ O $_x$ (a), Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_x$ (b, c), Hierc-MnFe $_{0.4}$ Co $_{0.6}$ O $_x$ (d), Hierc-MnFeO $_x$ (e, f), Hierc-FeO $_x$ (g, h), Hierc-MnO $_x$ (i, j), and Hierc-CoO $_x$ (k, l).

to previous studies, the H_2 consumption peaks located at 200–300 °C are assigned to the reduction of $Fe^3 \rightarrow Fe^{(3-\delta)^+}$, $Co^{3+} \rightarrow Co^{2+}$, $Mn^{4+} \rightarrow Mn^{3+}$ and $Mn^{3+} \rightarrow Mn^{2+}$, and the ones at 300–800 °C are ascribed to the reduction of $Co^{2+} \rightarrow Co^0$ and $Fe^{(3-\delta)+} \rightarrow Fe^0$ [64,65]. It is obvious that the reduction peak located at 585 °C shifted to the lower temperature (from 585 to 482 °C). According to this phenomenon, it can be inferred that the reduction capacity of FeO_x could be effectively promoted when cobalt was incorporated into Hierc-MnFeO_x, which accounted for the enhanced low-temperature activity over the Hierc-MnFe_{0.6}Co_{0.4}O_x catalyst.

It is generally believed that NH_3 can be adsorbed and activated by the acid sites of the $deNO_x$ catalysts. Thus, the acidity of Hierc-MnFe $_{0.6}Co_{0.4}O_x$ and related catalysts were investigated using temperature-programmed desorption of NH_3 (NH_3 -TPD) (Fig. 9b). Based on earlier studies, the desorption peak below 200 °C can be ascribed to NH_3 adsorbed onto the weak acid sites, and the desorption peak between 200 and 500 °C can be attributed to the medium-strong acid sites [18]. It is obvious that the desorption

peak areas of all the pure metal oxides catalysts were small, but the desorption peak area related to Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_x$ was much larger than that of Hierc-MnFeO $_x$, especially the peak for medium-strong acid sites. Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_x$ had the maximum acid amount. In general, the effect of adding Co on the acidic properties of the Hierc-MnFeO $_x$ catalyst was evident. The acid amount could increase after Co was doped into Hierc-MnFeO $_x$, which might promote NH $_3$ adsorption and ultimately resulted in better low-temperature NH $_3$ -SCR performance.

3.6. In situ diffuse-reflectance infrared Fourier transform spectroscopy over Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_x$ and Hierc-MnFeO $_x$ catalysts

3.6.1. Adsorption of NH₃ and co-adsorption of NO + O_2

To fully understand the effect of Co addition on the reaction mechanism, *in situ* diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) tests were conducted over the optimal sam-

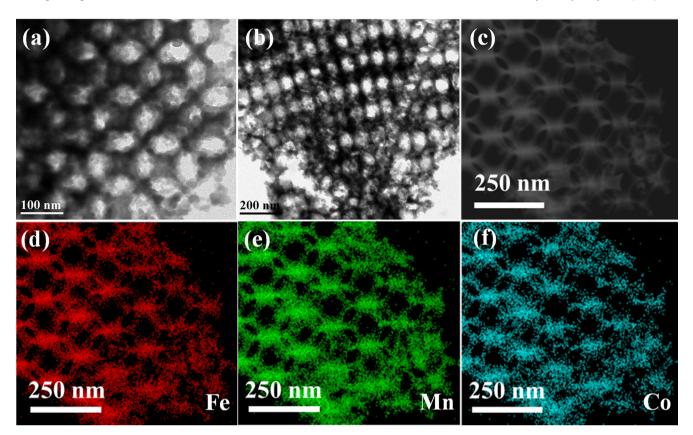
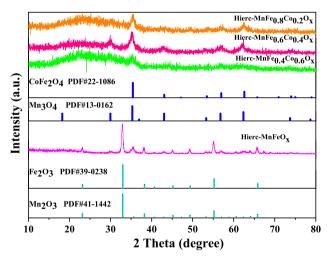
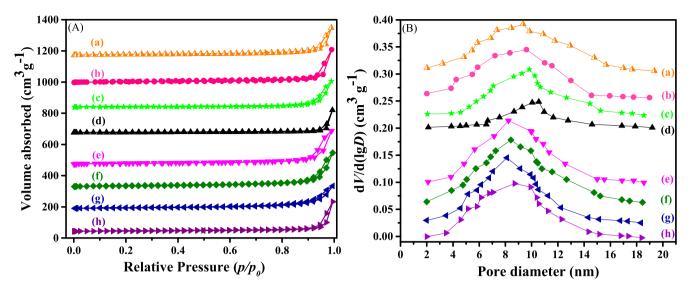


Fig. 4. TEM images (a, b), HAADF-STEM image (c), and elemental mapping images (d-f) of the Hierc-MnFe_{0.6}Co_{0.4}O_x ternary metal oxide catalyst.




Fig. 5. XRD patterns of Hierc-MnFe $_{0.8}$ Co $_{0.2}$ O $_x$, Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_x$, Hierc-MnFe $_{0.4}$ -Co $_{0.6}$ O $_x$ and Hierc-MnFeO $_x$ catalysts.

ple (Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_x$) and its counterpart sample (Hierc-MnFeO $_x$). Fig. S12 displays the *in situ* DRIFT spectra of NH $_3$ adsorption on Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_x$ and Hierc-MnFeO $_x$ at 200 °C. As shown in Fig. S12 A, two weak bands related to coordinated NH $_3$ species (1302 cm $^{-1}$) and NH $_3$ coordinated with Lewis acid sites (1560 cm $^{-1}$, NH $_3$ -L) could be observed in 11 min, and the band intensity slowly increased with treatment time. [66]. As for the typical Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_x$ catalyst (Fig. S12B), it was found that more surface acid sites existed than on Hierc-MnFeO $_x$, the stronger band assigned to the NH $_4^+$ bounded to Brønsted acid sites (NH $_4^+$ -B, 1402 cm $_1^{-1}$) could be detected in 5 min [67]. In addition, a band at 1538 cm $_1^{-1}$ attributed to $_1$ NH $_2$ species appeared [30], suggesting

that Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_x$ has stronger oxidation performance than Hierc-MnFeO $_x$ and a better NH $_3$ activation process occurred on the surface of the Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_x$. The relationship between the absorption band area and time is presented in Fig. S12E (the areas are the sum of all the absorption band marked in the figure). Compared with Fig. S12A, the absorption band area shown in Fig. S12B was bigger, implying that the surface of Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_x$ could absorb more NH $_3$ species than that of Hierc-MnFeO $_x$, in accordance with the results of NH $_3$ -TPD.

The co-adsorption of NO + O₂ over the Hierc-MnFeO_x and Hierc-MnFe_{0.6}Co_{0.4}O_x catalysts are shown in Figs. S12C and S12D. For the Hierc-MnFeO_x catalyst, as presented in Fig. S12C, the bands at 1545 cm⁻¹ can be ascribed to monodentate nitrate [16], and the band at 1234 cm⁻¹ can be assigned to bridging nitrate [17]. After the proper amount of Co was doped, as depicted in Fig. S12D, the bands located at 1581 and 1290 cm⁻¹ could be assigned respectively to bidentate nitrate and monodentate nitrate [65,68]. It is worth noting that the adsorption peak intensity of Hierc-MnFe_{0.6}Co_{0.4}O_x was much higher than that of Hierc-MnFeO_x, which suggested that the Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_x$ catalyst has better adsorption ability for NO species than Hierc-MnFeOx catalyst. Previous studies have confirmed that adsorbed NO_x-species plays a significant role not only in the reaction with NH₃ (thus giving rise to N₂ formation) but also in promoting the rate of the reoxidation step of the catalyst redox cycle [69–74]. Summarizing the above results, we can infer that the doping of Co species could effectively promote the adsorption behavior of NH₃ and NO_x species on the surface of Hierc-MnFe_{0.6}Co_{0.4}O_x, which might be in favor of the NH₃-SCR reaction at low temperature.

3.6.2. Reaction between flue gas NO + O₂ and preadsorbed NH₃ species To study the deNO_x mechanism of the Hierc-MnFe_{0.6}Co_{0.4}O_x catalyst, a series of *in situ* DRIFTS tests were conducted to investigate

 $\textbf{Fig. 6.} \ (A) \ N_2 \ adsorption/desorption \ isotherms \ and \ (B) \ pore-size \ distributions \ of \ (a) \ Hierc-MnFe_{0.8}Co_{0.2}O_x, \ (b) \ Hierc-MnFe_{0.6}Co_{0.4}O_x, \ (c) \ Hierc-MnFe_{0.4}Co_{0.6}O_x, \ (d) \ Con-MnFe_{0.6}Co_{0.4}O_x, \ (e) \ Hierc-FeO_x, \ (f) \ Hierc-FeO_x, \ (g) \ Hierc-FeO_x, \ (h) \ H$

the adsorption and reaction behavior of the reactants and identify the crucial intermediates. First, the reaction between the preadsorbed NH₃ species and the flue gases (NO + O₂) over the HiercMnFe $_{0.6}$ Co $_{0.4}$ O $_x$ catalyst was studied at 200 °C. As shown in Fig. 10, compared with Fig. S12B, some bands (such as 1402 cm $^{-1}$) vanished due to their weak adsorption stability, but

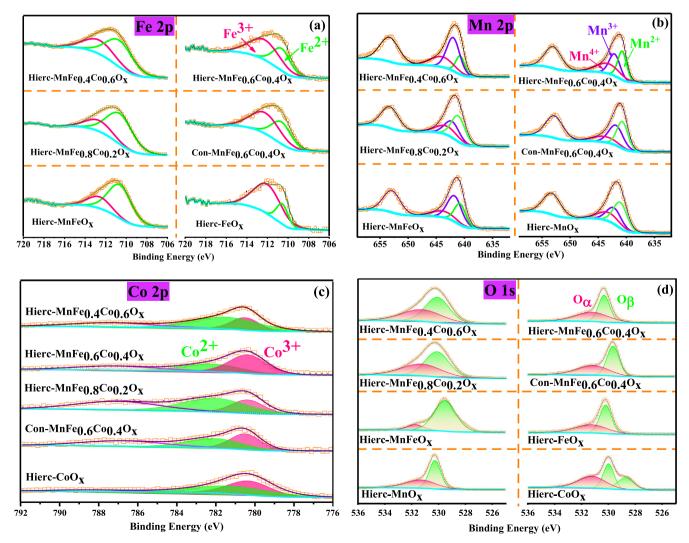



Fig. 7. XPS spectra of (a) Fe 2p, (b) Mn 2p, (c) Co 2p, and (d) O 1s over Hierc-MnFe_{0.6}Co_{0.4}O_x and related catalysts.

Fig. 8. Redox catalytic cycle of the low-temperature SCR reaction over Hierc-MnFe_{1- δ}Co $_{\delta}$ O_x oxide catalysts.

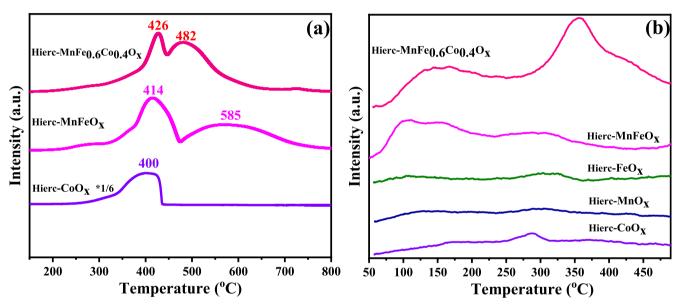


Fig. 9. H₂-TPR (a) and NH₃-TPD (b) profiles of Hierc-MnFe_{0.6}Co_{0.4}O_x and related catalysts.

more new bands emerged when the pretreatment time was prolonged. The bands appearing at 1201 and 1611 cm⁻¹ were detected in the spectrum of the Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_x$ surface after 1 h of NH₃ adsorption, which were ascribed to NH₃ coordinated with Lewis acid sites (NH₃-L) [56,68]; the bands at 1695 and 1643 cm⁻¹ could be attributed to the symmetric adsorption of the NH₃ bond at the Brønsted acid sites [18,75]. Then, following the introduction of flue gas (NO + O₂), after N₂ purging, the bands at 1695, 1643, and 1611 cm⁻¹ disappeared immediately. However, the band intensity at 1201 cm⁻¹ decreased and vanished completely 15 min later, and some new bands, corresponding to bidentate nitrates (1005 cm⁻¹) [49], monodentate nitrate species (1294 and 1459 cm^{-1}) [66,76], and bridging nitrate (1576 cm⁻¹) appeared in 20 min and the band intensity increased steadily due to the accumulation of the reaction products [66], which suggested that NH₃ could be adsorbed and activated by the acid sites and engaged in the reaction with nitrate species, indicating that the deNO_x reaction over Hierc-MnFe_{0.6}Co_{0.4}O_x might follow the Langmuir-Hinshelwood (L-H) mechanism.

3.6.3. Reaction between flue gas NH_3 and preadsorbed $NO + O_2$ species The DRIFTS spectra of Hierc-MnFe_{0.6}Co_{0.4}O_x in a flue of NH_3 after being pre-exposed to an $NO + O_2$ atmosphere and then purged with N_2 at 200 °C are displayed in Fig. 11a. Exposure of Hierc-

MnFe $_{0.6}$ Co $_{0.4}$ O $_x$ to NO + O $_2$ for 1 h resulted in the appearance of bands ascribed to monodentate nitrate (1299 cm $^{-1}$) [66], linear nitrites (1482 cm $^{-1}$), and bidentate nitrate (1581 cm $^{-1}$) [49,65]. After the flue gas NH $_3$ was introduced into the IR cell, the intensity of the IR bands assigned to the N-containing species was gradually reduced. Moreover, with increasing reaction time, the band at 1482 cm $^{-1}$ shifted to 1472 cm $^{-1}$, and no bands of NH $_3$ species were observed in the spectrum. This might be because the adsorbed NH $_3$ was covered by the large number of adsorbed NO $_x$ species, which implied that, similarly, the L–H mechanism might have occurred.

The above findings suggested that NH_3 -SCR over the Hierc-MnFe $_{0.6}$ Co $_{0.4}$ O $_x$ catalyst might follow the L–H mechanism, according to the following equations (where * represents surface active sites):

$$O_2(g) + 2* \rightarrow 20 - *,$$
 (14)

$$NH_3(g) + * \rightarrow NH_3 - * coordinated \ NH_3, \ NH_3 - L, \ NH_4 + -B, \eqno(15)$$

$$NH_3 - * + O - * \rightarrow * - NH_2 + * - OH,$$
 (16)

$$NO(g) + O - * \rightarrow * - NO_2$$
 monodentate nitrate, linear nitrites, bridging nitrates, (17)

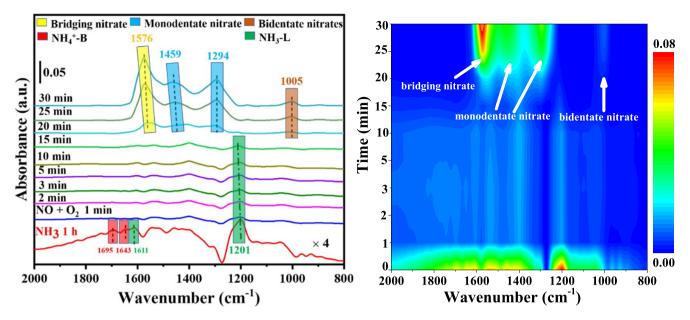


Fig. 10. In situ DRIFTS spectra of reaction between flue gases (NO + O_2) and the preadsorbed NH₃ at 200 °C and the corresponding mapping results (right) over the Hierc-MnFe_{0.6}Co_{0.4}O_x catalyst.

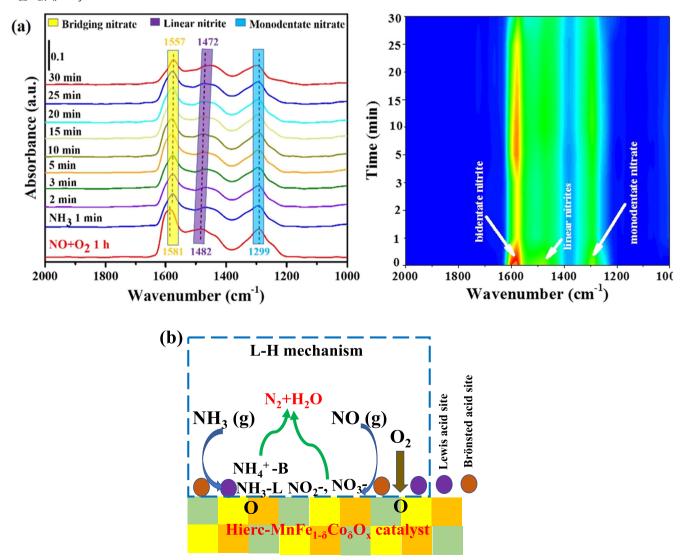


Fig. 11. (a) In situ DRIFTS spectra of reaction between NH₃ and preadsorbed NO + O_2 at 200 °C and the corresponding mapping results (right) over Hierc-MnFe_{0.6}Co_{0.4}O_x; (b) proposed NH₃-SCR reaction mechanism over Hierc-MnFe_{0.6}Co_{0.4}O_x.

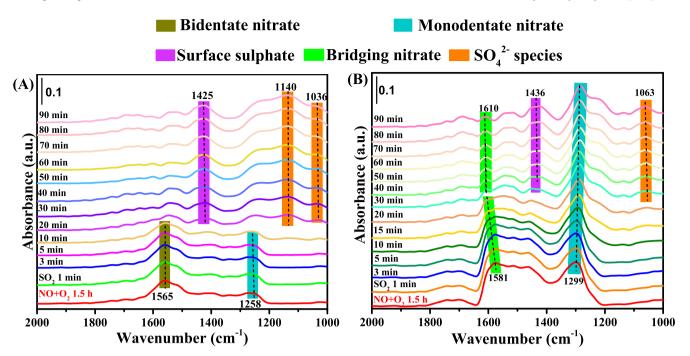


Fig. 12. In situ DRIFTS spectra of the influence of SO₂ on preadsorbed NO + O₂ over the (A) Hierc-MnFeO_x and (B) Hierc-MnFe_{0.6}Co_{0.4}O_x catalysts at 120 °C.

$$*-NH_2+*-NO_2 \rightarrow N_2+H_2O+O-*+*L-H \ mechanism.$$

(18)

A schematic diagram of the proposed reaction mechanism is depicted in Fig. 11b.

3.6.4. Reaction between $SO_2 + O_2$ and the preadsorbed $NO + O_2$

To determine the reason for the better SO_2 tolerance performance of Hierc-MnFe_{0.6}Co_{0.4}O_x at low temperature than that of Hierc-MnFeO_x, *in situ* DRIFTS analyses were conducted. As portrayed in Fig. 12, NO + O₂ species were preadsorbed on Hierc-MnFe_{0.6}Co_{0.4}O_x and Hierc-MnFeO_x for 1.5 h, then the flue gas $(SO_2 + O_2)$ was introduced at 120 °C. For the Hierc-MnFeO_x catalyst (Fig. 12A), the spectrum revealed adsorption peaks at 1565 and 1258 cm⁻¹, which have been attributed to bidentate nitrates and monodentate nitrate species [77], respectively. About 10 min later, these nitrate species almost vanished completely, and some new bands appeared at 1425, 1140 and 1036 cm⁻¹. The band centered at 1425 cm⁻¹ is assigned to the surface sulfate species [78]. The peaks at 1140 and 1036 cm⁻¹ correspond to the SO_4^{2-} species [79]. The trapping reaction can be represented as

$$SO_2(g) + O^* \rightarrow SO_3(ads), \tag{19} \label{eq:19}$$

$$SO_2(g) + M - O \rightarrow M - SO_3,$$
 (20)

$$SO_3(ads) + M - O \rightarrow M - SO_4. \tag{21}$$

The aforementioned findings indicated that abundant sulfate species were formed on the Hierc-MnFeO $_{\rm x}$ catalyst within sites exposed to SO $_{\rm 2}$ for 90 min, which led to the deactivation of the catalyst. However, for the Hierc-MnFe $_{\rm 0.6}$ Co $_{\rm 0.4}$ O $_{\rm x}$ catalyst (Fig. 12B), the phenomenon showed some differences, and although sulfate species (1436 and 1063 cm $^{-1}$) could also be detected on the Hierc-MnFe $_{\rm 0.6}$ Co $_{\rm 0.4}$ O $_{\rm x}$ catalyst [17,79], bridging nitrate (1581 and 1610 cm $^{-1}$) and monodentate nitrate (1299 cm $^{-1}$) always existed throughout the reaction [65,66,78], thus, these residual nitrate species could continue to participate in subsequent NH $_{\rm 3}$ -SCR reactions. Importantly, the bridged nitrite, as a key transition state of the NO species, could still be present on the surface of the Hierc-

MnFe_{0.6}Co_{0.4}O_x catalyst during the reaction, due to its low stability, the formation, transformation, and decomposition of bridged nitrite accelerates the SCR reaction at low temperature [23,80]. These results suggested that the doping of Co could efficiently protect nitrate species from the poisoning effect of SO₂. As a result, the activity of the Hierc-MnFe_{0.6}Co_{0.4}O_x catalyst could be maintained for a relatively longer time when exposed to SO₂, which could be attributed to the synergistic effect of the Co modification.

4. Conclusions

In summary, Co-doped MnFeO_x ternary oxides with a hierarchically ordered structure (Hierc-MnFe_{1- δ}Co $_{\delta}$ O_x, δ = 0.2, 0.4 and 0.6) were prepared via a simple hard-template method. The Hierc- $MnFe_{1-\delta}Co_{\delta}O_{x}$ catalysts displayed boosted low-temperature activity for selective catalytic reduction of NO_x with NH₃. The NO_x conversion exceeded 80% between 90 and 343 °C and the active temperature window was evidently broadened over the Hierc-MnFe_{0.6}Co_{0.4}O_x catalyst. After analysis by various techniques, the superior performance of NH3-SCR reaction on the Co-modified Hierc-MnFeO_x could be attributed to the larger number of active oxygen species and the higher ratios of Mn⁴⁺, Fe³⁺ and Co³⁺ content, as well as the improvement of the surface acidity. Additionally, the Hierc-MnFe_{0.6}Co_{0.4}O_x catalyst exhibited better soot tolerance due to its special hierarchically ordered architecture. Most importantly, Hierc-MnFe_{0.6}Co_{0.4}O_x displayed remarkable SO₂ tolerance compared with the unmodified Hierc-MnFeO_x catalvst. The in situ DRIFTS confirmed that the L-H mechanism might occur in the reaction and the doping of Co species could effectively promote the adsorption behavior of NH₂ and NO_y species on the surface of Hierc-MnFe_{0.6}Co_{0.4}O_x, which might be in favor of the NH₃-SCR reaction at low temperature. Moreover, the addition of Co could efficiently protect nitrate species on the Hierc-MnFe_{0.6}Co_{0.4}O_x from the poisoning effect of SO₂, which accounted for its better SO₂ tolerance. Therefore, the Hierc-MnFe_{1-δ}Co_δO_x ternary oxides developed in this work provide a guidance for researchers to design high performance Mn-based lowtemperature catalysts for NH_3 -SCR of NO_x with enhanced H_2O , soot, and SO_2 tolerance.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the National Key R&D Program of China (2016YFC0205900), the National Natural Science Foundation of China (21976078 and 21773106), the Natural Science Foundation of Jiangxi Province (20201BAB203024), the National Engineering Laboratory for Mobile Source Emission Control Technology (NELMS2020A05), and the Foundation of State Key Laboratory of High-efficiency Utilization of Coal & Green Chemical Engineering (Grant No. 2018-K04), all of which are gratefully acknowledged by the authors.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jcat.2020.12.036.

References

- [1] G.C. Dhal, S. Dey, D. Mohan, R. Prasad, Simultaneous abatement of diesel soot and NO_x emissions by effective catalysts at low temperature: An overview, Catal. Rev. 60 (2018) 437–496.
- [2] G. He, Z. Lian, Y. Yu, Y. Yang, K. Liu, X. Shi, Z. Yan, W. Shan, H. He, Polymeric vanadyl species determine the low-temperature activity of V-based catalysts for the SCR of NO_x with NH₃, Sci. Adv. 4 (2018) u4637.
- [3] A. Marberger, D. Ferri, M. Elsener, O. Kröcher, The significance of lewis acid sites for the selective catalytic reduction of nitric oxide on vanadium-based catalysts, Angew. Chem. Int. Ed. 55 (2016) 11989–11994.
- [4] L. Han, S. Cai, M. Gao, J. Hasegawa, P. Wang, J. Zhang, L. Shi, D. Zhang, Selective catalytic reduction of NO_x with NH₃ by using novel catalysts: state of the art and future prospects, Chem. Rev. 119 (2019) 10916–10976.
- [5] L. Han, M. Gao, C. Feng, L. Shi, D. Zhang, Fe₂O₃-CeO₂@Al₂O₃ nanoarrays on Almesh as SO₂-tolerant monolith catalysts for NO_x reduction by NH₃, Environ. Sci. Technol. 53 (2019) 5946–5956.
- [6] Q. Xu, Z. Fang, Y. Chen, Y. Guo, Y. Guo, L. Wang, Y. Wang, J. Zhang, W. Zhan, Titania–Samarium–manganese composite oxide for the low-temperature selective catalytic reduction of NO with NH₃, Environ. Sci. Technol. 54 (2020) 2530–2538
- [7] N. Zhu, W. Shan, Z. Lian, Y. Zhang, K. Liu, H. He, A superior Fe-V-Ti catalyst with high activity and SO_2 resistance for the selective catalytic reduction of NO_x with NH_3 , J. Hazard. Mater. 382 (2020) 120970.
- [8] L. Chen, Q. Wang, X. Wang, Q. Cong, H. Ma, T. Guo, S. Li, W. Li, High-performance CeO₂/halloysite hierarchical catalysts with promotional redox property and acidity for the selective catalytic reduction of NO with NH₃, Chem. Eng. J. 390 (2020) 124251.
- [9] C. Li, Z. Huang, X. Liu, J. Chen, W. Qu, X. Jiang, H. Wang, Z. Ma, X. Tang, Y. Chen, Rational design of alkali-resistant catalysts for selective NO reduction with NH₃, Chem. Commun. 55 (2019) 9853–9856.
- [10] S. Ding, F. Liu, X. Shi, H. He, Promotional effect of Nb additive on the activity and hydrothermal stability for the selective catalytic reduction of NO with NH₃ over CeZrO_x catalyst, Appl. Catal. B Environ. 180 (2016) 766–774.
- [11] X. Zhao, L. Huang, H. Li, H. Hu, X. Hu, L. Shi, D. Zhang, Promotional effects of zirconium doped CeVO₄ for the low-temperature selective catalytic reduction of NO₈ with NH₃, Appl. Catal. B Environ. 183 (2016) 269–281.
- [12] L. Xu, C. Wang, H. Chang, Q. Wu, T. Zhang, J. Li, New Insight into SO₂ poisoning and regeneration of CeO₂-WO₃/TiO₂ and V₂O₅-WO₃/TiO₂ catalysts for lowtemperature NH₃-SCR, Environ. Sci. Technol. 52 (2018) 7064–7071.
- [13] J. Fan, P. Ning, Z. Song, X. Liu, L. Wang, J. Wang, H. Wang, K. Long, Q. Zhang, Mechanistic aspects of NH₃-SCR reaction over CeO₂/TiO₂-ZrO₂-SO₄²⁻ catalyst: In situ DRIFTS investigation, Chem. Eng. J. 334 (2018) 855–863.
- [14] Z. Huang, X. Gu, W. Wen, P. Hu, M. Makkee, H. Lin, F. Kapteijn, X. Tang, A "Smart" hollandite $DeNO_x$ catalyst: self-protection against alkali poisoning, Angew. Chem. Int. Ed. 52 (2013) 660–664.
- [15] Z. Fan, J. Shi, C. Gao, G. Gao, B. Wang, C. Niu, Rationally designed porous MnO_x-FeO_x nanoneedles for low-temperature selective catalytic reduction of NO_x by NH₃, Appl. Mater. Interfaces 9 (2017) 16117–16127.

- [16] H. Wang, P. Ning, Y. Zhang, Y. Ma, J. Wang, L. Wang, Q. Zhang, Highly efficient WO₃-FeO_x catalysts synthesized using a novel solvent-free method for NH₃-SCR, J. Hazard. Mater. 121812 (2019).
- [17] C. Sun, H. Liu, W. Chen, D. Chen, S. Yu, A. Liu, L. Dong, S. Feng, Insights into the Sm/Zr co-doping effects on N₂ selectivity and SO₂ resistance of a MnO_x-TiO₂ catalyst for the NH₃-SCR reaction, Chem. Eng. J. 347 (2018) 27–40.
- [18] S. Ma, X. Zhao, Y. Li, T. Zhang, F. Yuan, X. Niu, Y. Zhu, Effect of W on the acidity and redox performance of the Cu_{0.02}Fe_{0.2}W_aTiO_x (a = 0.01, 0.02, 0.03) catalysts for NH₃-SCR of NO, Appl. Catal. B Environ. 248 (2019) 226–238.
- [19] D. Meng, W. Zhan, Y. Guo, Y. Guo, L. Wang, G. Lu, A highly effective catalyst of Sm-MnO_x for the NH₃-SCR of NO_x at low temperature: promotional role of Sm and its catalytic performance, ACS Catal. 5 (2015) 5973–5983.
- [20] N. Fang, J. Guo, S. Shu, H. Luo, Y. Chu, J. Li, Enhancement of low-temperature activity and sulfur resistance of Fe_{0.3}Mn_{0.5}Zr_{0.2} catalyst for NO removal by NH₃-SCR, Chem. Eng. J. 325 (2017) 114–123.
- [21] L. Chen, F. Yuan, Z. Li, X. Niu, Y. Zhu, Synergistic effect between the redox property and acidity on enhancing the low temperature NH3-SCR activity for NO removal over the Co0.2CexMn0.8-xTi10 (x = 0-0.40) oxides catalysts, Chem. Eng. J. 354 (2018) 393-406.
- [22] Q. Yan, S. Chen, C. Zhang, Q. Wang, B. Louis, Synthesis and catalytic performance of Cu₁Mn_{0.5}Ti_{0.5}O_x mixed oxide as low-temperature NH₃-SCR catalyst with enhanced SO₂ resistance, Appl. Catal. B Environ. 238 (2018) 236– 247
- [23] C. Liu, J. Shi, C. Gao, C. Niu, Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NO_x with NH₃: A review, Appl. Catal. A-Gen. 522 (2016) 54–69.
- [24] H. Xu, N. Yan, Z. Qu, W. Liu, J. Mei, W. Huang, S. Zhao, Gaseous heterogeneous catalytic reactions over Mn-based oxides for environmental applications: A critical review, Environ. Sci. Technol. 51 (2017) 8879–8892.
- [25] C. Gao, B. Xiao, J. Shi, C. He, B. Wang, D. Ma, Y. Cheng, C. Niu, Comprehensive understanding the promoting effect of Dy-doping on MnFeO_x nanowires for the low-temperature NH₃-SCR of NO_x: An experimental and theoretical study, J. Catal. 380 (2019) 55–67.
- [26] H. Chang, J. Li, X. Chen, L. Ma, S. Yang, J.W. Schwank, J. Hao, Effect of Sn on MnO_x-CeO₂ catalyst for SCR of NO_x by ammonia: Enhancement of activity and remarkable resistance to SO₂, Catal. Commun. 27 (2012) 54–57.
- [27] Z. Liu, J. Zhu, J. Li, L. Ma, S.I. Woo, Novel Mn-Ce-Ti mixed oxide catalyst for the selective catalytic reduction of NO_x with NH₃, ACS Appl. Mater. Interfaces 6 (2014) 14500–14508.
- [28] J. Qiao, N. Wang, Z. Wang, W. Sun, K. Sun, Porous bimetallic Mn₂Co₁O_x catalysts prepared by a one-step combustion method for the low temperature selective catalytic reduction of NO_x with NH₃, Catal. Commun. 72 (2015) 111–115.
- [29] X. Tang, C. Li, H. Yi, L. Wang, Q. Yu, F. Gao, X. Cui, C. Chu, J. Li, R. Zhang, Facile and fast synthesis of novel Mn₂CoO₄@rGO catalysts for the NH₃-SCR of NO_x at low temperature, Chem. Eng. J. 333 (2018) 467–476.
- [30] F. Wang, B. Shen, S. Zhu, Z. Wang, Promotion of Fe and Co doped Mn-Ce/TiO₂ catalysts for low temperature NH₃-SCR with SO₂ tolerance, Fuel 249 (2019) 54–60.
- [31] J. Yu, F. Guo, Y. Wang, J. Zhu, Y. Liu, F. Su, S. Gao, G. Xu, Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH₃, Appl. Catal. B Environ. 95 (2010) 160–168.
- [32] X. Wu, C. Wang, Y. Wei, J. Xiong, Y. Zhao, Z. Zhao, J. Liu, J. Li, Multifunctional photocatalysts of Pt-decorated 3DOM perovskite-type SrTiO₃ with enhanced CO₂ adsorption and photoelectron enrichment for selective CO₂ reduction with H₂O to CH₄, J. Catal. 377 (2019) 309–321.
- [33] X. Yu, L. Wang, M. Chen, X. Fan, Z. Zhao, K. Cheng, Y. Chen, Z. Sojka, Y. Wei, J. Liu, Enhanced activity and sulfur resistance for soot combustion on three-dimensionally ordered macroporous-mesoporous Mn_xCe_{1-x}O_δ/SiO₂ catalysts, Appl. Catal. B Environ. 254 (2019) 246–259.
- [34] Y. Wei, J. Liu, Z. Zhao, Y. Chen, C. Xu, A. Duan, G. Jiang, H. He, Highly active catalysts of gold nanoparticles supported on three-dimensionally ordered macroporous LaFeO₃ for soot oxidation, Angew. Chem. Int. Ed. 50 (2011) 2326–2329.
- [35] J. Zhao, Y. Shu, P. Zhang, Solid-state CTAB-assisted synthesis of mesoporous Fe₃O₄ and Au@Fe₃O₄ by mechanochemistry, Chin. J. Catal. 40 (2019) 1078–1084
- [36] Y. Wei, Z. Zhao, T. Li, J. Liu, A. Duan, G. Jiang, The novel catalysts of truncated polyhedron Pt nanoparticles supported on three-dimensionally ordered macroporous oxides (Mn, Fe Co, Ni, Cu) with nanoporous walls for soot combustion, Appl. Catal. B Environ. 146 (2014) 57–70.
- [37] M.A.A. Aziz, A.A. Jalil, S. Triwahyono, R.R. Mukti, Y.H. Taufiq-Yap, M.R. Sazegar, Highly active Ni-promoted mesostructured silica nanoparticles for CO₂ methanation, Appl. Catal. B Environ. 147 (2014) 359–368.
- [38] S.T. Oyama, X. Zhang, J. Lu, Y. Gu, T. Fujitani, Epoxidation of propylene with $\rm H_2$ and $\rm O_2$ in the explosive regime in a packed-bed catalytic membrane reactor, J. Catal. 257 (2008) 1–4.
- [39] T. Wang, J. Xing, L. Zhu, A. Jia, Y. Wang, J. Lu, M. Luo, CO oxidation over supported Pt/Cr_xFe_{2-x}O₃ catalysts and their good tolerance to CO₂ and H₂O, Appl. Catal. B Environ. 245 (2019) 314–324.
- [40] X. Wu, H. Meng, Y. Du, J. Liu, B. Hou, X. Xie, Insight into $\text{Cu}_2\text{O}/\text{CuO}$ collaboration in the selective catalytic reduction of NO with NH₃: Enhanced activity and synergistic mechanism, J. Catal. 384 (2020) 72–87.
- [41] B. Meng, Z. Zhao, X. Wang, J. Liang, J. Qiu, Selective catalytic reduction of nitrogen oxides by ammonia over Co₃O₄ nanocrystals with different shapes, Appl. Catal. B Environ. 129 (2013) 491–500.

- [42] R. Ke, J. Li, X. Liang, J. Hao, Novel promoting effect of SO₂ on the selective catalytic reduction of NO_x by ammonia over Co₃O₄ catalyst, Catal. Commun. 8 (2007) 2096–2099.
- [43] F. Liu, H. He, C. Zhang, Z. Feng, L. Zheng, Y. Xie, T. Hu, Selective catalytic reduction of NO with NH₃ over iron titanate catalyst: Catalytic performance and characterization, Appl. Catal. B Environ. 96 (2010) 408–420.
- [44] L. Arnarson, H. Falsig, S.B. Rasmussen, J.V. Lauritsen, P.G. Moses, A complete reaction mechanism for standard and fast selective catalytic reduction of nitrogen oxides on low coverage VO_x/TiO₂(001) catalysts, J. Catal. 346 (2017) 188–197
- [45] M. Koebel, G. Madia, F. Raimondi, A. Wokaun, Enhanced reoxidation of vanadia by NO₂ in the fast SCR reaction, J. Catal. 209 (2002) 159–165.
- [46] M. Koebel, M. Elsener, G. Madia, Reaction pathways in the selective catalytic reduction process with NO and NO₂ at low temperatures, Ind. Eng. Chem. Res. 40 (2001) 52–59.
- [47] J. Liu, X. Shi, Y. Shan, Z. Yan, W. Shan, Y. Yu, H. He, Hydrothermal stability of CeO₂-WO₃-ZrO₂ mixed oxides for selective catalytic reduction of NO_x by NH₃, Environ. Sci. Technol. 52 (2018) 11769–11777.
- [48] H. Xu, Y. Li, B. Xu, Y. Cao, X. Feng, M. Sun, M. Gong, Y. Chen, Effectively promote catalytic performance by adjusting W/Fe molar ratio of FeW_x/Ce_{0.68}Zr_{0.32}O₂ monolithic catalyst for NH₃-SCR, J. Ind. Eng. Chem. 36 (2016) 334–345.
- [49] X. Yao, L. Chen, J. Cao, Y. Chen, M. Tian, F. Yang, J. Sun, C. Tang, L. Dong, Enhancing the deNO_x performance of MnO_x/CeO₂-ZrO₂ nanorod catalyst for low-temperature NH₃-SCR by TiO₂ modification, Chem. Eng. J. 369 (2019) 46– 56
- [50] J. Li, H. Chang, L. Ma, J. Hao, R.T. Yang, Low-temperature selective catalytic reduction of $\rm NO_x$ with NH $_3$ over metal oxide and zeolite catalysts-A review, Catal. Today 175 (2011) 147–156.
- [51] B. Jin, Y. Wei, Z. Zhao, J. Liu, X. Yu, Y. Li, J. Li, Synthesis of three-dimensionally ordered macroporous Al-Ce mixed oxide catalysts with high catalytic activity and stability for diesel soot combustion, Catal. Today 258 (2015) 487–497.
- [52] Y. Zhang, J. Deng, H. Zhang, Y. Liu, H. Dai, Three-dimensionally ordered macroporous Pr₆O₁₁ and Tb₄O₇ with mesoporous walls: Preparation, characterization, and catalytic activity for CO oxidation, Catal. Today 245 (2015) 28–36.
- [53] F. Yu, X. Xu, H. Peng, H. Yu, Y. Dai, W. Liu, J. Ying, Q. Sun, X. Wang, Porous NiO nano-sheet as an active and stable catalyst for CH₄ deep oxidation, Appl. Catal. A Gen. 507 (2015) 109–118.
- [54] W. Niu, L. Li, X. Liu, N. Wang, J. Liu, W. Zhou, Z. Tang, S. Chen, Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: an efficient electrocatalyst for oxygen reduction reaction, J. Am. Chem. Soc. 137 (2015) 5555–5562.
- [55] X. Zhou, X. Huang, A. Xie, S. Luo, C. Yao, X. Li, S. Zuo, V₂O₅-decorated Mn-Fe/attapulgite catalyst with high SO₂ tolerance for SCR of NO_x with NH₃ at low temperature, Chem. Eng. J. 326 (2017) 1074–1085.
 [56] Z. Wang, R. Guo, X. Shi, X. Liu, H. Qin, Y. Liu, C. Duan, D. Guo, W. Pan, The
- [56] Z. Wang, R. Guo, X. Shi, X. Liu, H. Qin, Y. Liu, C. Duan, D. Guo, W. Pan, The superior performance of CoMnO_x catalyst with ball-flowerlike structure for low-temperature selective catalytic reduction of NO_x by NH₃, Chem. Eng. J. 381 (2020) 122753.
- [57] X. Tang, J. Li, L. Sun, J. Hao, Origination of N₂O from NO reduction by NH₃ over β-MnO₂ and α-Mn₂O₃, Appl. Catal. B Environ. 99 (2010) 156–162.
- [58] S.S.R. Putluru, L. Schill, A.D. Jensen, B. Siret, F. Tabaries, R. Fehrmann, Mn/TiO₂ and Mn-Fe/TiO₂ catalysts synthesized by deposition precipitation-promising for selective catalytic reduction of NO with NH₃ at low temperatures, Appl. Catal. B Environ. 165 (2015) 628–635.
- [59] B. Bai, H. Arandiyan, J. Li, Comparison of the performance for oxidation of formaldehyde on nano-Co₃O₄, 2D-Co₃O₄, and 3D-Co₃O₄ catalysts, Appl. Catal. B Environ. 142–143 (2013) 677–683.
- [60] H. Hu, S. Cai, H. Li, L. Huang, L. Shi, D. Zhang, Mechanistic aspects of deNO_x processing over TiO₂ supported Co-Mn oxide catalysts: structure-activity relationships and in situ DRIFTs analysis, ACS Catal. 5 (2015) 6069–6077.
- [61] S. Yang, C. Wang, J. Li, N. Yan, L. Ma, H. Chang, Low temperature selective catalytic reduction of NO with NH₃ over Mn-Fe spinel: Performance, mechanism and kinetic study, Appl. Catal. B Environ. 110 (2011) 71–80.

- [62] F. Wang, Z. Xie, J. Liang, B. Fang, Y.A. Piao, M. Hao, Z. Wang, Tourmaline-modified FeMnTiO_x catalysts for improved low-temperature NH₃-SCR performance, Environ. Sci. Technol. 53 (2019) 6989–6996.
- [63] S. Gillot, G. Tricot, H. Vezin, J. Dacquin, C. Dujardin, P. Granger, Induced effect of tungsten incorporation on the catalytic properties of CeVO₄ systems for the selective reduction of NO_x by ammonia, Appl. Catal. B Environ. 234 (2018) 318–328
- [64] R. Wang, Z. Hao, Y. Li, G. Liu, H. Zhang, H. Wang, Y. Xia, S. Zhan, Relationship between structure and performance of a novel highly dispersed MnO_x on Co-Al layered double oxide for low temperature NH₃-SCR, Appl. Catal. B Environ. 258 (2019) 117983.
- [65] F. Liu, H. He, Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NO_x with NH_3 , J. Phys. Chem. C 114 (2010) 16929-16936.
- [66] X. Li, J. Li, Y. Peng, H. Chang, T. Zhang, S. Zhao, W. Si, J. Hao, Mechanism of arsenic poisoning on SCR catalyst of CeW/Ti and its novel efficient regeneration method with hydrogen, Appl. Catal. B Environ. 184 (2016) 246-257.
- [67] S. Zhan, H. Zhang, Y. Zhang, Q. Shi, Y. Li, X. Li, Efficient NH_3 –SCR removal of NOx with highly ordered mesoporous $WO_3(\chi)$ –CeO $_2$ at low temperatures, Appl. Catal. B Environ. 203 (2017) 199–209.
- [68] L. Chen, J. Li, M. Ge, DRIFT study on cerium-tungsten/titiania catalyst for selective catalytic reduction of NO_x with NH₃, Environ. Sci. Technol. 44 (2010) 9590–9596.
- [69] V. Vargheese, J. Murakami, K.K. Bando, I. Tyrone Ghampson, G. Yun, Y. Kobayashi, S. Ted Oyama, The direct molecular oxygen partial oxidation of CH₄ to dimethyl ether without methanol formation over a Pt/Y₂O₃ catalyst using an NO/NO₂ oxygen atom shuttle, J. Catal. 389 (2020) 352–365.
- [70] M. Koebel, M. Elsener, M. Kleemann, Urea-SCR: a promising technique to reduce NO_x emissions from automotive diesel engines, Catal. Today 59 (2000) 335–345.
- [71] A. Beretta, A. Lanza, L. Lietti, S. Alcove Clave, J. Collier, M. Nash, An investigation on the redox kinetics of NH₃-SCR over a V/Mo/Ti catalyst: Evidence of a direct role of NO in the re-oxidation step, Chem. Eng. J. 359 (2019) 88–98.
- [72] İ. Nova, C. Ciardelli, E. Tronconi, D. Chatterjee, B. Bandl Konrad, NH₃-SCR of NO over a V-based catalyst: Low-T redox kinetics with NH₃ inhibition, AlChE J. 52 (2006) 3222–3233.
- [73] V. Vargheese, Y. Kobayashi, S.T. Oyama, The direct partial oxidation of methane to dimethyl ether over Pt/Y₂O₃ catalysts using an NO/O₂ shuttle, Angew. Chem. Int. Ed. 59 (2020) 16644–16650.
- [74] G. Madia, M. Koebel, M. Elsener, A. Wokaun, The effect of an oxidation precatalyst on the NO_x reduction by ammonia SCR, Ind. Eng. Chem. Res. 41 (2002) 3512–3517.
- [75] Ž. Fan, J. Shi, C. Gao, G. Gao, B. Wang, Y. Wang, C. He, C. Niu, Gd-modified MnOx for the selective catalytic reduction of NO by NH₃: The promoting effect of Gd on the catalytic performance and sulfur resistance, Chem. Eng. J. 348 (2018) 820–830.
- [76] J. Tan, Y. Wei, Y. Sun, J. Liu, Z. Zhao, W. Song, J. Li, X. Zhang, Simultaneous removal of NO_x and soot particulates from diesel engine exhaust by 3DOM Fe-Mn oxide catalysts, J. Ind. Eng. Chem. 63 (2018) 84–94.
- [77] T.H. Vuong, J. Radnik, J. Rabeah, U. Bentrup, M. Schneider, H. Atia, U. Armbruster, W. Grünert, A. Brückner, Efficient VO_x/Ce_{1-x}Ti_xO₂ Catalysts for Low-Temperature NH₃-SCR: Reaction Mechanism and Active Sites Assessed by in Situ/Operando Spectroscopy, ACS Catal. 7 (2017) 1693–1705.
- [78] R. Jin, Y. Liu, Y. Wang, W. Cen, Z. Wu, H. Wang, X. Weng, The role of cerium in the improved SO₂ tolerance for NO reduction with NH₃ over Mn-Ce/TiO₂ catalyst at low temperature, Appl. Catal. B Environ. 148–149 (2014) 582–588.
- [79] L. Zhang, L. Li, Y. Cao, X. Yao, C. Ge, F. Gao, Y. Deng, C. Tang, L. Dong, Getting insight into the influence of SO₂ on TiO₂/CeO₂ for the selective catalytic reduction of NO by NH₃, Appl. Catal. B Environ. 165 (2015) 589–598.
- [80] G. Marban, Mechanism of low-temperature selective catalytic reduction of NO with NH₃ over carbon-supported Mn₃O₄ Role of surface NH₃ species: SCR mechanism, J. Catal. 226 (2004) 138–155.