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a b s t r a c t

Particle-bound pollutants can pose a health risk to humans. Inhalation exposure evaluated by total
contaminant concentrations significantly overestimates the potential risk. To assess the risk more
accurately, bioavailability, which is the fraction that enters into the systemic circulation, should be
considered. Researchers have replaced bioavailability by bioaccessibility due to the rapid and cost-
efficient measurement for the latter, especially for assessment by oral ingestion. However, contami-
nants in particulates have different behavior when inhaled than when orally ingested. Some of the
contaminants are exhaled along with exhalation, and others are deposited in the lung with the partic-
ulates. In addition, a fraction of the contaminants is released into the lung fluid and absorbed by the lung,
and another fraction enters systemic circulation under the action of cell phagocytosis on particulates.
Even if the release fraction, i.e., release bioaccessibility, is considered, the measurement faces many
challenges. The present study highlights the factors influencing release bioaccessibility and the incor-
poration of inhalation bioaccessibility into the risk assessment of inhaled contaminants. Currently, there
are three types of extraction techniques for simulated human lung fluids, including simple chemical
solutions, sequential extraction techniques, and physiologically based techniques. The last technique
generally uses three kinds of solution: Gamble’s solution, Hatch’s solution, and artificial lysosomal fluid,
which are the most widely used physiologically based simulated human lung fluids. External factors such
as simulated lung fluid composition, pH, extraction time, and sorption sinks can affect release bio-
accessibility, whereas particle size and contaminant properties are important internal factors. Overall,
release bioaccessibility is less used than bioaccessibility considering the deposition fraction when
assessing the risk of contaminants in inhaled particulates. The release bioaccessibility measurement
poses two main challenges: developing a unified, accurate, stable, simple, and systematic biologically
based method, and validating the method through in-vivo assays.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Atmospheric particulate pollution, especially fine particulate
e by Charles Wong.
y of Environmental Catalysis
Environmental Catalysis and
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matter with aerodynamic diameter less than 2.5 mm (PM2.5), is one
of the most hazardous factors influencing human health world-
wide. According to epidemiological studies, atmospheric particu-
late pollution is consistently associated with morbidity and
mortality from respiratory diseases, e.g., chronic obstructive pul-
monary disease, pneumonia, and lung cancer (Pope et al., 2002;
Wei et al., 2018). A great variety of substances, includingmetal(loid)
s, organic chemicals, and pathogens, can be carried by particulate
matter into the respiratory system through inhalation (Choi et al.,
2017; Liu et al., 2019b; Yu et al., 2014). Their presence in particu-
lates has been of great concern because of the toxic properties of
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some substances, such as heavy metals and hydrophobic organic
contaminants (HOCs). Hence, the harmful effects of contaminants
in particulate matter are very important in evaluating human
health risk by inhalation (Xie et al., 2018; Zhang et al., 2016).

To assess the human health risks of metal(loid)s or organic
contaminants in inhaled particulates, many studies in the earlier
literature have used total contaminant concentrations (Desboeufs
et al., 2005; Gerde et al., 2001; Monn, 2001), and this is the case
even in more recent studies (Liu et al., 2019b; Pelfrêne et al., 2017;
Scheffler et al., 2018). However, evaluating the inhalation health
risk of particle-bound contaminants using total concentrations
overestimates the potential risk because only a part of the partic-
ulates can be deposited in the lungs by inhalation. Furthermore,
only those contaminants in the deposited particulates can be
effectively absorbed and enter into the systemic circulation
(Kastury et al., 2018b; Li et al., 2016c). Hence, the deposition frac-
tion and the release fraction into the lung fluid, which can be
absorbed into the systemic circulation, of atmospheric particulate
matter are important factors in evaluating the human health risk
from particulate-based contaminants.

The deposition fraction of atmospheric particulate matter refers
to the percentage of inhaled particulates that are deposited in the
respiratory tract (Fig. 1). All the contaminants in the deposited
particulates should be considered in the bioaccessible fraction of
the total, although some contaminants (mainly volatile organic
compounds) may be exhaled from the lungs because of volatiliza-
tion from the deposited particulates (Wei et al., 2018). In the pre-
sent review, the deposition fraction is called deposition
bioaccessibility. Furthermore, some studies have indicated that
contaminants released into human lung fluids can be described as
the bioaccessible fraction (Zereini et al., 2012; Pelfrêne et al., 2017),
similarly to oral bioaccessibility measurement using simulated
human gastrointestinal digestion solution (Rostami and Juhasz,
2011; Yu et al., 2012b; Zhang et al., 2017). Therefore, the release
fraction of contaminants from particulates in the simulated human
lung fluid is called release bioaccessibility. These two kinds of
bioaccessibility are both referred to here as inhalation
bioaccessibility.

It should be noted that conditions are very different between
the human gastrointestinal tract and the lungs because only the
pollutants released into intestinal fluid can be absorbed by the
small intestine in the gastrointestinal tract; the pollutants that
cannot be released will be excreted along with feces (Dean and Ma,
2007; Deshommes et al., 2012; Yu et al., 2010). However, the
outcome is very different for pollutants in particulate matter in the
lungs. Once particulates are deposited in the lungs, whether or not
the pollutants in the particulates release into the lung fluid, they are
very difficult to get out of the lungs. The pollutants will either be
released into the lung fluids for absorption or enter the human
body under the action of cell phagocytosis on particulates. In other
words, these pollutants are all bioaccessible. The fraction of
Fig. 1. Model schematics for inhalation bioaccessibility.
contaminants crossing the cell membrane into the capillaries and
reaching the systemic circulation is referred to as bioavailability, or
the fraction of a contaminant that is bioavailable (Collins et al.,
2015; Semple et al., 2004). Although inhalation bioavailability by
in-vivomethods remains the most appropriate for assessing human
health risk, its measurement is very difficult. Therefore, inhalation
bioaccessibility, especially for release bioaccessibility, is predomi-
nately evaluated by in-vitro methods as a rapid, cost-efficient
approach with few ethical concerns (Mukhtar and Limbeck,
2013b). Moreover, inhalation bioaccessibility has been proposed
to replace inhalation bioavailability for human exposure assess-
ment (Lu et al., 2018).

Compared with in-vitro methods using simulated gastrointes-
tinal tract for oral bioaccessibility determination, research on
release bioaccessibility using simulated lung fluids started much
later (Dean and Ma, 2007; Wei et al., 2018; Wragg and Cave, 2002).
Existing methods for release bioaccessibility do not have a unified
protocol (Tables 1 and 2). The physiological parameters used in the
available literature have not been fully explored, which poses many
challenges for data interpretation and comparison among meth-
odologies (Kademoglou et al., 2018; Wei et al., 2018). Therefore, the
main objective of the present work is to review the development
and progress of the release bioaccessibility measurement of pol-
lutants in atmospheric particulate matter. The present review
highlights and provides a comprehensive insight into the devel-
opment of simulated lung fluids, the influencing factors of in-vitro
methods of release bioaccessibility measurement, the challenges
faced, and possibly a unified protocol.

2. Methodology and overview

The present study used “simulated lung fluids” and “particulate”
as keywords for literature search. A total of 388 articles were found
in Web of Science available on 10 October, 2019. The search was
limited to references to contaminants released into simulated lung
fluids from their matrix in the title or abstract. In addition, a manual
search of the references of relevant publications was also con-
ducted. Ultimately, 78 articles were found on released metal(loid)s
or organic contaminants from particulates into simulated lung
fluids. Fig. 2 shows the available reports on release bioaccessibility
of particulate-bound contaminants by in-vitro methods from 2003
to 2019. It shows that more and more studies have been conducted
in recent years and that studies on metal(loid)s have been much
more numerous than studies of organic contaminants. Because no
information is available on hydrophilic organic contaminants,
metal(loid)s and HOCs are the focus of the present review.

Currently, there is no unified in-vitro method for measuring
release bioaccessibilities of contaminants in particulates by inha-
lation, and many factors can affect the results. For example,
different particulates including PM2.5, woodstove particulates,
black carbon, diesel soot, e-waste burning particulates, indoor dust,
and biochar have been reported in the literature, and release bio-
accessibility would be affected by the different physiochemical
properties of the particulates. In addition, different simulated lung
fluids, such as water, phospholipid vesicles, 1-octanol, dipalmi-
toylphosphatidylcholine (DPPC), Gamble’s solution, and artificial
lysosomal fluid (ALF), were used to simulate the fluids lining the
lung epithelium or the intracellular fluid in phagocytes after par-
ticulate deposition. Other factors, such as extraction time and
particle size, were also of concern. Therefore, a comprehensive
review of these factors would be helpful for developing a unified in-
vitro method (Tables 1 and 2).

Furthermore, the properties of substances also have an impor-
tant influence on release bioaccessibility. For instance, the bio-
accessibilities of benzo[a]pyrene and benzo[k]fluoranthene range



Table 1
Measurements of the release bioaccessibilities of metal(loid)s.

Simulated lung fluids Samples Metal(loid)s Particle
sizes

Extraction
time

S/L ratio
(g/mL)

Agitation References

Simple chemical solutions
Water APM Fe, Mn e 30 min e e Desboeufs et al.

(2005)
Water APM, black smoke Fe, Ni, Cu, Zn, Ti, V, Cr,

Mn, As, Cd, Pb
PM10, PM2.5 1 h e Ultrasonic Heal et al. (2005)

Water APM Cu, Fe, Mg, Mn, Al, Ba, Ca,
Cr, Pb, Se, Ti, Zn

PM10, PM2.5 1 h 1:23866
e1:70922

Ultrasonic Santos et al. (2009)

Water NIST 1648a, BCR 038，
NIES 8, NIST 2584

Co, Cu, La, Mn, Pb, Ba, Cd,
Ce, Mo, Ni, Pb, Sb, Zn

e 24 h 1:20000 Orbital shaker Julien et al. (2011)

Water Urban APM Co, Cu, Mn, As, Ba, Cd, Ni,
Pb, Zn

PM10 1 h e Ultrasonic Mukhtar and
Limbeck (2013a)

Water
Citric acid

Nickel substances Ni 100 mm 1 h, 24 h 1:500 Shaken Oller et al. (2009)

Citrate Cobalt oodde Co 1.7 mm 7 d e Shaken Collier et al. (1992)
Ammonium citrate Nickel substances Ni 100 mm 1 h, 24 h 1:500 Shaken Oller et al. (2009)
Bicarbonate Cobalt oodde Co 1.7 mm 7 d e Shaken Collier et al. (1992)
Ammonium citrate
Sodium chloride
Ammonium acetate

Urban APM Co, Cu, Mn, As, Ba, Cd, Ni,
Pb, Zn

PM10 1 h e Ultrasonic
bath

Mukhtar and
Limbeck (2013a)

Physiologically based techniques
Gamble’s solution Slag dust Ni, Cd, Zn, Mn e 12h 1:1000 _ Lima et al. (2013)
Gamble’s solution Urban APM Pt, Pd, Rh PM10, PM2.5, PM1 24h, 30d e Shaken Zereini et al. (2012)
Gamble’s solution Urban APM Co, Ni, Ce, Pb, Ti, V, Cr, Mn,

Cu, As, Sb
PM10, PM2.5, PM1 24 h 1:1163 Shaken Wiseman and

Zereini (2014)
Gamble’s solution Welsh mine waste Pb PM10 630 h 1:44 Shaken Wragg and Klinck

(2007)
Modified Gamble’s solution Mine waste calcine Hg 150 mm 24 h 1:20 Rotated Gray et al. (2010)
Synthetic serum Urban APM,

Dustrial sites APM
Ni, Pb, Cd, Cu, Mn, Zn 7.2 mm 60 min e e Voutsa and Samara

(2002)
Lung simulating serum Household APM Cu, Zn, As, Cd, Cr, Mn, Sn,

Sb, Ni, Hg, Pb
PM2.5 24 h e Shaken Huang et al. (2014)

Simulated epithelial lung fluid Smelter, topsoil, tailing Pb PM10 24 h 1:66.7 Rotated Boisa et al. (2014)
Simulated lung fluid Coal fly ash Cu, Ni, Pb, Al, Cr III, Cr IV, Th,

U, V, Zn
PM10 144 h 1:20 Rotated Twining et al.

(2005)
Hatch’s solution Indoor PM Hg, Mn, Ni, As, Cd, Cr, Pb,

Zn
25, 37, 63 mm 16 h 1:100 Shaken Sysalov�a et al.

(2014)
Phagolysosomal simulant

fluid
Bulk mine waste Zn, Pb, Cd 37 mm 5 d 1:100 e Schaider et al.

(2007)
Artificial lysosomal fluid Urban APM Pt, Pd, Rh PM10, PM2.5, PM1 24h, 30d e Shaken Zereini et al. (2012)

NIST: National Institute of Standards and Technology, NIES: National Institute for Environmental Studies, BCR: European Community Bureau of Reference, APM: airborne
particulate matter.
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from 25% to >85%, but the bioaccessibilities of the other PAHs are
pretty low, with values less than 1.3% (Bevan and Yonda, 1985;
Borm et al., 2005; Ewing et al., 2006; Gerde et al., 2001). Dimethyl
phthalate (DMP) and diethyl phthalate (DEP) are >75% bio-
accessible, whereas bis(2-ethylhexyl) phthalate (DEHP), di-iso-
nonyl-cyclohexane-1,2-dicarboxylate (DINCH), and bis(2-
ethylhexyl) terephthalate (DEHT) have relatively low bio-
accessibility (<5%) (Kademoglou et al., 2018). Similar differences
were generally observed for metals. In samples from different sites,
not detected (ND)�95% of Zn was found to be bioaccessible and
<1%e96% of Pb was observed to be bioaccessible in different par-
ticulates (Huang et al., 2014; Julien et al., 2011; Lima et al., 2013;
Mukhtar and Limbeck, 2013a; Sysalov�a et al., 2014; Voutsa and
Samara, 2002; Wiseman and Zereini, 2014). The literature release
bioaccessibilities of metal(loid)s were summarized and are shown
in Fig. 3.
3. Simulated lung fluids

During development of a release bioaccessibility measurement,
many simulated human lung fluids have been used (Fig. 4).
Extraction techniques using simple chemical solution-based
methods, sequential extraction techniques, and physiologically
based techniques are widely used to simulate the extracellular
fluids lining the lung epithelium or the intracellular fluid in
phagocytes. These techniques use a variety of leaching agents as
extraction solutions to maintain conditions as close as possible to
the respiratory system. These simulated lung fluids and extraction
techniques have been reviewed briefly.
3.1. Simple chemical solutions and sequential extraction techniques

In early times, many simple chemical solutions, such as water
and solutions of sodium chloride, sodium chloride, ammonium
acetate, and ammonium citrate (Fig. 4), have been generally used as
simulated lung fluids to measure the release of metals from at-
mospheric particulate matter (such as PM2.5, PM10, and black
smoke), welding fumes, and standard reference materials (SRMs)
(Heal et al., 2005; Julien et al., 2011; Oller et al., 2009). Because of
their practicality, cost-efficiency, and lack of damage to the in-
strument during testing, these solutions were widely used. In
addition, it was believed that pollutants dissolved in simple
chemical solutions could easily dissolve into natural human lung
fluids and result in adverse effects on human health. However, the
release of metals in particulates in natural human lung fluids might
exhibit different behaviors than in simple chemical solutions
because of the complex compositions of natural human lung fluids
with different pH levels and ionic strengths (Mukhtar and Limbeck,



Table 2
Measurements of the release bioaccessibilities of HOCs.

Simulated lung fluids Sample types HOCs Particle size Extraction
time

Sorption
sinks

Sample
amounts

solution
amounts

S/L ratio
(g/mL)

Agitation Bioaccessibilities References

Simple chemical solutions
Phospholipid vesicles Woodstove

particle
Bap
BkF

NA 18 h e 100 mg 70 mg e Bath-type
sonicator

25%
68%

Bevan and
Yonda (1985)

1-octanol Diesel soot Bap 1.3 ± 0.2 mm 20 s e 0.12 mg 17 mL 1:150000 Two-bladed
impeller

36% Gerde et al.
(2001)

1-octanol Silica Bap 3.5 mm 5 min e 100 mg 17 mL 1:170 Stirring >85% Ewing et al.
(2006)

Dipalmitoylphosphati-
dylcholine

Diesel or carbon
black

Phe
Pyr
Ant
Chr
Flu

NA 24 h e 3e60 mg 3 mL 1:50
e1:1000

Shaking
water bath

<1.2%
<0.4%
<1%
<1.3%
<1.3%

Borm et al.
(2005)

Physiologically based
techniques

Simulated epithelial
lung
fluid

APM 19
PAHs

2.5 mm 24 h e e 20 mL 1:600
e1:4000

Shaking 3.21%e44.2% Li et al. (2019)

Modified Gamble’s
solution

Artificial lysosomal
fluid

E-waste burning
particles

PAHs 5.6 mm 10 d Tenax 20 mg 200 mL 1:10000 e 3%e96.8% Xie et al. (2018)

Gamble’s solution
Artificial lysosomal

fluid

APM 9 PAHs 2.5 mm 24 h e e 25 mL e Shaking >13.7% Gao et al. (2019)

Gamble’s solution
Artificial lysosomal

fluid

Indoor dust DMP
DEP
DEHP
DEHT
DINCH

63 mm 96 h e 200 mg 20 mL 1:100 e >75%
>75%
<5%
<5%
<5%

Kademoglou
et al. (2018)

Gamble’s solution
Artificial lysosomal

fluid

Biochar Phe
Pyr

3 mm 30 min e 4 mg 20 mL 1:5000 Shaking 0.47%e0.75% Liu et al.
(2019b)

Gamble’s solution
Artificial lysosomal

fluid

Indoor dust 8 PAHs e 24 h e e 25 mL e Shaking NDe31.7% Liu et al.
(2019c)

Gamble’s solution
Artificial lysosomal

fluid

APM HFRs
OPFRs
PAHs

2.5 mm 1 d, 15 d e 70 mg 70 mL 1:1000 Shaking 0.7%e24.5% Zeng et, al. 2019

BaP: benzo[a]pyrene, BkF: benzo[k]fluoranthene, Phe: phenanthrene, Pyr: pyrene, Ant: anthracene, Chr: chrysene, Flu: fluoranthene, DMP: dimethyl phthalate, DEP: diethyl
phthalate, DEHP: bis(2-ethylhexyl) phthalate, DEHT: bis(2-ethylhexyl) terephthalate, DINCH: di-isononyl-cyclohexane-1,2-dicarboxylate, PAHs: polycyclic aromatic hydro-
carbons, APM: airborne particulate matter, HFRs: halogenated flame retardants, OPFRs: organophosphorus flame retardants, NA: not available, ND: not detected.
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2013a). The pH of simple chemical solutions (especially involving
water) is highly susceptible to change under the influence of
sample variation. Therefore, these simple chemical solutions can
influence the release efficiency of substances from their matrices,
such as atmospheric particulate matter, and result in high inter-
sample variability. Hence, different simulated lung fluids can
affect the release bioaccessibilities of contaminants in in-vitro
methods using simple chemical solutions. Therefore, more complex
chemical solutions simulating human lung fluids for in-vitro
methods should be developed and used.

Consequently, sequential extraction techniques were developed
to leach metals with different chemical speciation by increasingly
aggressive solutions to understand the chemical conditions of their
mobilization from atmospheric particulate matter. Target metals
were separated into different fractions, such as water-soluble and
exchangeable metals, carbonates, oxides, and reducible metals.
Knowledge of the chemical speciation of metals is vital in evalu-
ating their release in natural human lung fluids (Santos et al., 2009;
Schaider et al., 2007). For example, Schaider et al. (2007) found that
refractory metal sulfides were shifted into relatively labile and
desortable components in sequential extractions after physical and
chemical weathering. About 50%e65% of Zn, Pb, and cadmium (Cd)
in <37 mm mine waste particulates were exchangeable, as well as
carbonate sequential extraction fractions. However, extraction
solutions with strong acid reagents cannot represent biologically
relevant human lung fluids because of differences in composition
and physiological processes (Julien et al., 2011). Consequently, the
bioaccessible fraction cannot be evaluated accurately in terms of
composition and physiochemical properties using sequential
extraction techniques or simple chemical solutions. To solve this
problem, physiologically based simulated human lung fluid came
into being.
3.2. Physiologically based techniques

3.2.1. Gamble’s solution
As early as the 1940s, physiologically based solutions were used

in tentative attempts to mimic the composition of human lung
fluid. The earliest compositions of Gamble’s solution, created by
Gamble in 1942, had compositions similar to the extracellular fluid
in the skeletal muscle (Gamble, 1942). The basic chemicals used in
Gamble’s solution are cations (magnesium, sodium, calcium, and
potassium) and anions (proteins, bicarbonate, sulfate, organic acids,
chloride, and monohydrogen phosphate) with a pH of approxi-
mately 7.4. Non-electrolytes (glucose, amino acid, and waste
products of protein metabolism) and carbonic acid were also
included in this simulated lung fluid (Gamble, 1942). To estimate
the most likely exposure materials among twenty-two process



Fig. 3. Release bioaccessibilities of metal(loid)s in simulated human lung fluids (Boisa
et al., 2014; da Silva et al., 2015; Ettler et al., 2014; Fernandez et al., 2002; Graney et al.,
2004; Huang et al., 2014; Julien et al., 2011; Kyotani and Iwatsuki, 1998; Lima et al.,
2013; Mukhtar and Limbeck, 2013a; Mukhtar and Limbeck, 2013b; Mustafa et al.,
2007; Niu et al., 2010; Potgieter-Vermaak et al., 2012; Qureshi et al., 2006; Sysalov�a
et al., 2014; Twining et al., 2005; von Schneidemesser et al., 2010; Voutsa and
Samara, 2002; Wiseman and Zereini, 2014; Wragg and Klinck, 2007). Horizontal
lines with in the box and the lower, upper limit of the bar indicate median and 25%,
75% values, and the squares represent mean values. The whisker extends to the last
observation within 1.5 times the interquartile range. The diamonds outside the
whiskers represent the outers.

Fig. 2. Published articles in journals from 2003 to 2019 (A) and contaminants reported in the literature (B).
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materials in a Y-12 enriched uranium area, Steckel andWest (1966)
used the simulated lung fluid originally called Gamble’s solution to
conduct a uranium release study for 16 weeks. In 1979, the com-
positions and concentrations of the original Gamble’s solutionwere
presented in detail by Moss (1979).

More recently, the original Gamble’s solutionwithmodifications
has been given different names in subsequent studies and has been
widely used by many researchers (Mukhtar and Limbeck, 2013a;
Wiseman and Zereini, 2014). With the development of in-vitro
methods to measure contaminant release from particulates in
simulated human lung fluids, Gamble’s solution has continuously
beenmodified in various ways (Fig. 4). Currently, the generally used
Gamble’s solution can be divided into four major subclasses
(Kastury et al., 2017): the original Gamble’s solution (Moss, 1979),
Gamble’s solution modified with proteins and amino acids, Gam-
ble’s solution modified with serum simulant (Kanapilly et al., 1973),
and Gamble’s solution modified with lung surfactants (Boisa et al.,
2014), which are presented in Table 3.
3.2.2. Modified Gamble’s solution
Early studies mainly focused on heavy metals. The proteins and

amino acids in the original Gamble’s solution significantly influ-
ence the chelation of heavy metals, although the organic compo-
nents are only a small fraction of the total anions in the interstitial
fluid. Modified Gamble’s solutions with proteins and amino acids
were therefore developed. For example, glycine (Kanapilly et al.,
1973), protein (Morrow et al., 1968), bovine serum albumin
(Twining et al., 2005), and mucin (Boisa et al., 2014) were added to
the original Gamble’s solution. For example, Kanapilly et al. (1973)
added amino acids such as glycine to Gamble’s solution to replace
proteins and thus prevent clogging of filter pores. The release of
particulate-bound contaminants, including Pb and Zn, in the
modified Gamble’s solution was higher than in the original Gam-
ble’s solution (Berlinger et al., 2008). Julien et al. (2011) found that
amino acids might promote metal(loid) release by forming amino
acid structures. These studies all implied that certain amino acids



Table 3
Compositions of simulated human lung fluids (g/L).

Type Original Gamble
solution a

Modified Gamble solution
with proteins and amino acids b

Modified serum
simulant c

Modification with
lung surfactants d

Hatch’s
solution e

ALF f

NaCl 6.019 0.2 6.8 8.47 7 3.21
NaHCO3 2.604 2.7 2.27 2.016 2.27
KCl 0.298 0.298 0.298 0.37
Na2HPO4 0.142 0.15 0.1196 0.071
NaH2PO4 0.144
Mg(C2H3O2)2$4H2O 0.0342
Na2SO4 0.071 0.072 0.071 0.039
CaCl2$2H2O 0.4 0.256 0.128
CaCl2 0.022 0.277 0.225
MgCl2$6H2O 0.203 0.21
MgCl2 0.095 0.05
C6H5O7Na3$2H2O 0.097
C6H5O7Na3 0.052 0.774
C2H3O2Na$3H2O 0.9526
C2H3O2Na 0.574
KH2PO4 0.03
Citrate
Sodium lactate 0.085
Disodium tartrate 0.09
NH4Cl 6.02 0.535
Sodium pyruvate 0.172
H2SO4 0.049
C6H8O6 0.05
C5H4N4O3 0.025
C10H17N3O6S 0.05
D-Glucose 1
Glycine 0.376 0.45 0.059
Dipalmitoyl 0.2
Lysozyme 2.5
Citric acid 20.8
a-Tocopherol 0.001
Albumin 10
Apo-transferrin 0.2
choline 10
NaOH 6
L-Cysteine 0.122
DPPC 0.1
Ascorbic acid 0.018
Uric acid 0.016
Glutathione 0.03
Albumin 0.26
Mucin 0.5

a Moss (1979).
b Boisa et al. (2014).
c Kanapilly et al. (1973).
d Dennis et al. (1982).
e Berlinger et al. (2008).
f Colombo et al. (2008). ALF: artificial lysosomal fluid.

Fig. 4. Classification of simulated lung fluids.
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and proteins are efficient in promoting the release of certain
metal(loid)s.

Modified serum simulant was derived from Gamble’s solution
with a series of modifications by Kanapilly et al. (1973). This
formulation contained citrate as a substitute for acetate to repre-
sent organic acids, omitting magnesium and potassium ions, but



H. Ren et al. / Environmental Pollution 265 (2020) 115070 7
adding ammonium chloride to stabilize the pH at 7.3. According to a
study by Ansoborlo et al. (1998), there was a good correlation be-
tween in-vitro experiments involving UF4, UO2, and U3O8 in ura-
nium fuels using the modified serum simulant and in-vivo results
by intratracheal instillation using rats with the same uranium
compounds. A modified serum simulant called serum ultra-filtrate
was also used, in which diethylene triamine penta-acetic acid and
L-cysteine were added to the serum simulant because of their good
chelation of L-cysteine and the ability of diethylene triamine penta-
acetic acid to prevent precipitation of plutonium ions during the
experiments (Eidson and Mewhinney, 1983). Subsequently, serum
ultra-filtrate was used by Huang et al. (2014) and Voutsa and
Samara (2002).

Beyond the modified solutions just described, there is a kind of
Gamble’s solution modified with lung surfactants, which is a
mixture consisting of lipids and some proteins secreted by
epithelial type II cells with DPPC as the main ingredient. The lung
surfactants secreted in the alveolar region and lower bronchioles
can play an important role in reducing surface tension at the gas-
liquid surface (Bernhard, 2016; Veldhuizen and Haagsman, 2000).
Therefore, adding DPPC as a surrogate for surfactant would mimic
natural human lung fluids more closely. Recently, Pelfrêne et al.
(2017) suggested that the DPPC concentration in simulated lung
fluids should be approximately 100 mg/L, assuming a median
concentration of 7.4 mg/L for phosphatidylcholine in bron-
choalveolar fluid and a DPPC content 13 times that of
phosphatidylcholine.

In addition, DPPC, acting as a weak chelating agent, plays a
significant role in releasing contaminants fromparticulates because
it can increase the wettability of hydrophobic particulates, recon-
nect the leaching solution with the contaminants, and prevent
particulates from aggregating (Martin et al., 2018). For example,
when DPPC was removed from this modified Gamble’s solution, Pb
solubility in PM2.5 decreased from 23%e43% to 5.6%e18% (Li et al.,
2016b). Davies and Feddah (2003) demonstrated that a
concentration-dependent increase of three glucocorticoids in
desorption occurred after DPPC was added to simulated lung fluids.
Moreover, DPPC was also used to test the release of inhaled prod-
ucts (such as poorly soluble drug substances) in the pharmaceutical
sector (Davies and Feddah, 2003; Riley et al., 2012). Considering the
important effects of DPPC on both metal and organic chemicals, the
use of DPPC in the release bioaccessibility measurement of con-
taminants in simulated human lung fluids merits further study.
3.2.3. Hatch’s solution
Hatch’s solution is an additional type of simulated lung fluid

that has been used in some studies (Kastury et al., 2018a; Sysalov�a
et al., 2014). The human respiratory system consists of two layers of
extracellular secretions lining the tracheal bronchus. The upper
layer is a thicker “gel” layer of mucus, in which inhaled particulates
first deposit. The composition of the mucous layer of the respira-
tory tract was considered in formulating Hatch’s solution, as
described by Hatch (1992). This simulated lung fluid contains
elevated concentrations of protein, enzymes, lung surfactant, and
complex organic molecules. The release of As in mining and
smelting incubated in Hatch’s solution was approximately four
times greater than in four other simulated lung fluids, including the
original Gamble’s solution, serum simulant, simulated epithelial
lung fluid, and another formulation, after 24 h incubation (Kastury
et al., 2018a). Similar results were also observed for Pb (Berlinger
et al., 2008). The higher release efficiency in Hatch’s solution than
in Gamble’s solution may be partly attributed to the elevated
concentrations in Hatch’s solution of albumin and DPPC, which are
known as chelators for their capability to bind metal(loid)s.
3.2.4. Artificial lysosomal fluid
It is well known that a fraction of particulates will be swallowed

by macrophages within hours after deposition and that the acidic
condition inside macrophages is quite different from the extracel-
lular neutral environment. Consequently, some studies have pro-
posed an acidic solution with a similar composition to Gamble’s
solution, but adding hydrochloric acid or buffers to alter the pH
(Guldberg et al., 1998; Th�elohan and de Meringo, 1994). Stopford
et al. (2003) substituted glycine for glycerine and called the acidic
solution ALF. As a result, metals (such as platinum, palladium, and
rhodium) in particulate matter could be more thoroughly dissolved
in ALF than in Gamble’s solution because of the low pH of ALF
(Colombo et al., 2008; Fathi et al., 2012; Marques et al., 2011).
Currently, ALF has been widely used to mimic the acidic intracel-
lular lung environment of macrophages in many release bio-
accessibility measurements (Kastury et al., 2018b; Xie et al., 2018).

4. Factors influencing release bioaccessibility

Many factors can affect the release bioaccessibilities of pollut-
ants as measured using simulated human lung fluids (Fig. 4).
Generally, there are two kinds of factors: external and internal.
External factors mainly include the compositions of the simulated
lung fluid and the conditions for in-vitro methods, including
extraction time, sorption sinks, solid to liquid (S/L) ratio, and
agitation. The internal factors mainly include the characteristic
properties of chemicals and the matrices themselves. Significant
differences existing among the external and internal causes for
release bioaccessibility measurements by in-vitro methods have
made it difficult to construct a standardized method. The present
review highlights the influences of external and internal factors on
release bioaccessibility. A systematic discussion of the factors can
be helpful for constructing a standard in-vitro method simulating
human lung fluid for release bioaccessibility measurement of
contaminants in inhaled particulates.

4.1. Physiological parameters

To date, there has been no standardized in-vitro protocol for
release measurement of particulate-bound contaminants using
simulated lung fluids. The diverse parameters (pH, extraction time,
S/L ratio, and others) adopted in release bioaccessibility measure-
ments are highly variable, resulting in a variety of results.

4.1.1. pH
As mentioned earlier, the compositions of simulated human

lung fluids have an important influence on the release of pollutants,
including metal(loid)s and organic contaminants. The different
compositions result in various pH values, which may play an
important role in measurement of the release of bioaccessible
contaminants, especially for metals, although no consistent results
could be found in the literature (Liu et al., 2019b; Zeled�on-Toru~no
et al., 2007). For example, cobalt (Co) release from cobalt powder
is higher in ALF (pH ¼ 4.5) than in Gamble’s solution (pH ¼ 7.4)
(Stopford et al., 2003). However, according to Guo et al. (2017), pH is
not an affecting factor on the release of phenanthrene and pyrene
from BC700 in aqueous solution. On the one hand, phenanthrene
and pyrene, as non-ionic organic compounds, are not ionized in
water solution. On the other hand, this phenomenon may have
occurred because phenanthrene and pyrene are adsorbed in BC700
mostly through hydrophobic partitioning interaction instead of
electrostatic interaction at pH below 10, which is the point of zero
electric charge of BC700.

Similarly, Liu et al. (2019b) reported that pH showed no obvious
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effect on the release of phenanthrene bound in biochar. It had been
suggested that PAHs in water undergo a hydrophobic interaction
with leonardite and that C]C bond linkages of PAHs adsorbed in
carbonaceousmaterials are chemically inert and less affected by pH
(Zeled�on-Toru~no et al., 2007). However, Gao et al. (2019) suggested
that the surface positive charge on PM2.5 decreases with increasing
pH as the OH ions compete to adsorb on active sites with PAH
molecules, reducing adsorption efficiency and promoting PAH
release in Gamble’s solution. Considering the varied influences of
pH on contaminant release, further investigating the mechanisms
by which pH influences the release of particulate-bound metals or
HOCs in simulated lung fluids is needed.
4.1.2. Compositions of simulated lung fluids
As mentioned earlier, several kinds of simulated lung fluids

exist. The compositions of simulated human lung fluids can have a
significant effect on contaminant release from particulates. For
example, Julien et al. (2011) found that Gamble’s solution can
dissolve more Pb and Zn in four SRMs than water with a similar pH
because the chemical composition of the extraction solutions has a
significant impact on metal desorption. This is highlighted in a
report by Liu et al. (2019b), who found that low-molecular-weight
organic acids (such as citric acid) in ALF can increase the specific
surface area and micropore volume of the matrix, promoting ab-
sorption of HOCs such as phenanthrene. However, this result is not
consistent with the assay conducted by Sun et al. (2016), who found
that low-molecular-weight organic acids (citric and malic acids) in
aqueous solution can disrupt the linkages between a black carbon
surface and HOCs (such as PAHs) bound on it, thus increasing HOC
release from black carbon.

Moreover, inorganic and organic salts were found to reduce
desorption of phenanthrene from biochar because of pore blockage
caused by ions (Liu et al., 2019b). These results are consistent with
the study by Gao et al. (2019), who observed that black carbon-
bound PAHs have higher release bioaccessibility using Gamble’s
solution than using ALF because of themuch lower ionic strength of
Gamble’s solution. Furthermore, both Gamble’s solution and ALF
should be used to evaluate release bioaccessibility in future studies
because the two solutions represent different areas in the lung (Xie
et al., 2018).
4.1.3. Extraction time
The extraction time in release bioaccessibility studies has been

found to be intimately related with the clearance time of matrices
from the respiratory tract after particulates are initially deposited
in the alveolar region (Julien et al., 2011; Kastury et al., 2017). Most
of the factors influencing matrix clearance, such as characteristics
of target materials and immune response within an organism, are
not easily quantified. It has been confirmed that the half-life of
particulate clearance in the alveolar region is 110 days, as suggested
by Lay et al. (1998). In recent years, human lung clearance has been
addressed in experimental studies, which found that the half-life of
30% insoluble particulate deposits in the alveolar region is up to 30
days and that more than 50% of insoluble particulates are retained
at 300 days (Bailey et al., 2008; Kastury et al., 2017). This infor-
mation was also used to determine the parameter values of the
human respiratory tract models developed by the International
Commission on Radiological Protection (Bailey et al., 2008).
Therefore, the extraction times used in in-vitro methods using
simulated lung fluids for release bioaccessibility measurement
were generally much longer than those in oral bioaccessibility
determinations using a simulated human gastrointestinal tract.

By investigating desorption of pollutants on particulates and
according to the time when they reach the ultimate equilibrium
state, extraction times in release bioaccessibility ranging from a few
minutes to 360 days were investigated, and the released contami-
nants were found to be highly time-dependent for all kinds of
matrices (Lima et al., 2013). The desorption kinetics of both metals
and organic compounds in matrices in simulated lung fluids fol-
lowed a similar pseudo-second-order model consisting of a rapid
desorption phase followed by an asymptotically slow desorption
phase, although they arrived at balance at different times (Julien
et al., 2011; Kastury et al., 2018b; Liu et al., 2019b). Surveys such
as that conducted by Zeled�on-Toru~no et al. (2007) have suggested
that PAHs can adsorb onto adsorbents rapidly in the early phase
through hydrophobic interactions, after which they can slowly
migrate into inaccessible areas in the second desorption phase.
Some researchers have reported that the most suitable Pb, Zn, and
As release time is 24 h (Julien et al., 2011; Kastury et al., 2018a), but
all experiments reached apparent desorption equilibrium for
phenanthrene and pyrene release within approximately 30 min
and remained roughly flat afterwards (Liu et al., 2019b).

In addition, Hofmann and Asgharian (2003) calculated the
mucociliary clearance velocities in human bronchial airways by
asymmetric, multiple-path models and suggested that 85%e90% of
initial particulates deposited in the human terminal bronchioles
would be removed within 24 h after deposition. Wragg and Klinck
(2007) suggested an extraction time of 100 h when studying Pb
release using Gamble’s solution. In a recent study, a 10-day
extraction time was chosen by Xie et al. (2018) after evaluating
PAH solubility in modified Gamble’s solution and ALF. The longer
extraction time may be attributed to the S/L ratio or the charac-
teristics of PAHs in these studies. More accurate investigations of
the correlation between extraction time and contaminant release
should be conducted.
4.1.4. S/L ratio
As expected, the S/L ratio is an important factor when other

conditions are the same because the ratio can influence the mass of
dissolved contaminants in simulated human lung fluids. Consid-
ering the size and concentration of inhaled particulates in the air,
the number of particulates loading in the alveolar region is also
influenced by individual human physiology (Pelfrêne et al., 2017).
Many studies have shown that the average total surface of the lung
fluid volume in the alveolar regions is relatively small. For example,
the total volume of epithelial lining fluid was identified as 20 mL by
Macklin (1955), assuming an alveolar region average surface area of
100 m2 covered by an average of 0.2 mm depth of alveolar fluid. A
smaller fluid volume was suggested byWeibel (1973), who used an
average thickness of 0.068 mmcovering the same surface area of the
alveolar region to obtain a total alveolar fluid volume of 7 mL.
Hence, individual human physiology makes a precise S/L ratio
difficult to specify.

In the literature, S/L ratios varying from 1:50000 to 1:30 have
been used for release bioaccessibility measurement of inhaled
standard reference material-bound metals, including Mn, Ni, Pb,
Cd, Ce, Co, Cu, Zn, etc., in water and Gamble’s solution (Julien et al.,
2011). The study considered inhalation exposure scenarios over a
24-h period over a large concentration range of 20e500 mg/m3. As a
conservative estimate, it was assumed that all the inhaled partic-
ulates reached the pulmonary alveoli with an average daily air
uptake of 10e20 m3 and a total alveolar fluid volume ranging from
5 to 20 mL. Finally, Julien et al. (2011) found that the release of
metallic elements was independent of S/L from 1:500 to 1:5000.
Studies have been carried out using very wide ranges of S/L ratios
for release measurement of metals such as Ni, Cd, Zn, and Mn using
in-vitro simulated human lung fluid (Lima et al., 2013; Wiseman
and Zereini, 2014).
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Comparatively, for HOCs, there have been fewer studies on the
influence of S/L ratio. Wide ranges of these ratios have been
examined, although the organic chemicals in particulates exhibited
different properties from metal(loid)s. In experiments conducted
by Li et al. (2019), 4.3e34.3 mg PM2.5 samples were added to 20 mL
simulated epithelial lung fluid to investigate PAH release with S/L
ratios ranging from1:600 to 1:4000, a range that was similar to that
used by Julien et al. (2011). A larger ratio was used by Liu et al.
(2019b), who investigated desorption of biochar-bound phenan-
threne and pyrene using 4 mg samples added to 20 mL desorption
media (S/L ¼ 1:5000), i.e., Gamble’s solution and ALF. In compari-
son, Kademoglou et al. (2018) used a much lower ratio of 1:100 in
experiments in which 0.2 g indoor dust samples were added to
20 mL ALF. Unfortunately, that study did not further discuss the
effect of S/L ratio on the release of particulate-bound HOCs.
Currently, information on the influence of S/L ratio on contaminant
release and the associated mechanisms, especially for HOCs, is too
limited.

4.1.5. Agitation
Although agitation as a mechanical step has some immediate

effect on the solubility of a substance, it is traditionally thought of
as a uniform experimental procedure applied during in-vitro
methods. In ordinary air, the concentrations of particulates such as
PM2.5 are low. Particulate matter can be completely dispersed in
lung fluids in the human body without agglomeration. However,
the available surface area of particulates influencing the
contaminant-chelator interaction decreases when particulates
agglomerate together spontaneously without agitation after they
are added to simulated lung fluids (Ansoborlo et al., 1990). To
investigate the effect of agitation on the release of metal(loid)s, the
optimal type and frequency of agitation methods should be
understood.

Several available reports have been released on the influence of
agitation methods on substance release in simulated human lung
fluids. Julien et al. (2011) observed that orbital shaking tended to
concentrate the particulates, which limited full contact between
the particle surface and the lung simulant fluid, resulting in lower
Pb and Zn release in SRMs. Kastury et al. (2018a) studied the effect
of orbital rotation, end-over-end rotation, magnetic stirring, and
occasional stirring to assess their influences on the release of PM10-
bound As and Pb. In addition to magnetic stirring, which is not
congruent with lung mixing processes, the authors found no sig-
nificant differences among the other three agitation methods after
extraction for 24 h. They finally chose end-over-end rotation as
their mixing approach because the particulates were the most
dispersed in the simulated human lung fluid by visual inspection
when using this rotation method. Similar end-over-end rotation
has been generally used in oral contaminant bioaccessibility mea-
surement using a simulated human gastrointestinal tract (Oomen
et al., 2002; Yu et al., 2012a, 2019). However, to the authors’ best
knowledge, there is no available information on the influence of
agitation on HOC release in simulated human lung fluids, and hence
further investigation is required.

4.1.6. Sorption sinks
Beyond the factors described above, there is another very

important factor that can influence chemical release, especially for
HOCs. In the human gastrointestinal tract, because HOCs with high
hydrophobicity in general have high n-octanol-water partition co-
efficients (logKOW), the chemicals tend to partition into the lipid
membrane continuously and to maintain a concentration gradient
for further mobilization in intestinal enterocytes (Cui et al., 2016;
Zhang et al., 2016). Similarly, absorption of a substance in the lung
epithelial fluid is also a dynamic and complex process (Collins et al.,
2013; Gouliarmou et al., 2013). For example, the solubility of Ce, Zr,
and Nb in radioactive aerosol particulates in simulated lung fluids
under an equilibrium condition could not reflect actual release in
natural human lung fluids because of the static simulation method
(Kanapilly et al., 1973). Many traditional static studies evaluating
HOC release through in-vitro methods with simulated human lung
fluid with little liposome may underestimate the results, especially
for extremely hydrophobic compounds (Xie et al., 2018).

Recently, with the development of oral bioaccessibility mea-
surements using in-vitro methods in a simulated human gastroin-
testinal tract, many absorption sinks, such as Tenax, C18membrane,
silicon rod, and silicon combined with activated carbon, have been
added to the digestion solution to improve HOC release (Fang and
Stapleton, 2014; Li et al., 2016a; Yu et al., 2013). The absorption
sinks, which simulate the dynamic HOC uptake process, can
improve the correlation between oral bioaccessibility determined
by in-vitro methods and oral bioavailability using animals. Inves-
tigation of release bioaccessibility measurement using a similar
dynamic process has been very limited.

Tenax, a porous resin with high affinity, reusability, sensitivity,
accuracy, desirable adsorption, and conductive back-extraction for
HOCs, has beenwidely regarded as an ideal absorption sink for oral
bioaccessibility measurement (Harwood et al., 2013; Yu et al.,
2013). A similar absorption sink was also used by Xie et al.
(2018), who found that PAH releases with the assistance of Tenax
in Gamble’s solution and ALF were higher than those without
Tenax. At present, many questions remain regarding the use of
these absorption sinks. First, studies using Tenax extraction to
determine release HOC bioaccessibility are too scarce, and further
verification by in-vivo methods should be conducted. Second, the
combined effect of the absorption sink and the components of
simulated lung fluids on release bioaccessibility remains to be
investigated.

4.1.7. Selection of the physiological parameters
If the objective of a study involves only the release mechanism

or the adsorption and desorption mechanism of pollutants depos-
ited in lung particles, the selection of these parameters is
comparatively easy. However, to protect human health, the simu-
lated human fluids should, on the one hand, be as close as possible
to the composition of natural human lung fluid, and on the other
hand, the other incubation conditions should represent the worst-
case scenario. In other words, this scenario will lead to the largest
release bioaccessibilities of contaminants under the conditions.
Therefore, lower pH is suggested for metals, and Tenax as a sorption
sink is suggested as an addition. End-over-end rotation agitation is
recommended. Considering the effectiveness, an extraction time of
24 h is suitable. As for the S/L ratio, very different conditions were
appropriate for various matrices and target substances. The authors
suggested an S/L ratio at the inflection point of the correlation curve
between the release bioaccessibility and the S/L ratio.

4.2. Physiochemical factors of samples

4.2.1. Particulate types
Contaminant release from particulates can be affected by

various matrices of atmospheric particulate matter or dust. Studies
evaluating the influence of different particulate types using the
same methodological parameters are lacking (Table 1 and 2). Julien
et al. (2011) added four certified reference materials to Gamble’s
solution to investigate the release of metals and found that the
released Cu in the SRMs was similar, but that Cd, Pb, and Zn were
highly variable. At the same time, the solubility of metals in BCR
038, a fly ash powder composed of an aluminosilicate, glass, and an
iron oxide matrix, was weak compared with those in the other
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three materials, including NIST 1648a, NIES 8, and NIST 2584 in
Gamble’s solution (Julien et al., 2011). Similar releases of metals
from various materials such as Saharan aerosol particulates, Ari-
zona dust, fly ashes, and SRM 1648 provided by the National
Institute of Standards were also observed by Desboeufs et al.
(2005), who studied the release of trace metals using alumi-
nosilicated and carbonaceous samples under atmospheric water
conditions. They found that the metals in the aluminosilicated
matrix were more easily dissolved than those in the carbonaceous
matrix because of the type of bonds between the metals and the
matrices.

In the literature, different matrices have been generally
considered, and a variable set of parameters has been used in ex-
periments, which has made it difficult to evaluate the effect of
particulate types on the release of particulate-bound HOCs
(Table 2). Fortunately, the influence of particulate types on phen-
anthrene and pyrene release using Gamble’s solution and ALF was
evaluated by Liu et al. (2019b), who studied the release of these
chemicals from seven biochar samples produced by various plant
materials with different heat-treatment temperatures. Higher heat-
treatment temperatures resulted in a greater volume of micropores
in the particulates and led to lower phenanthrene desorption in ALF
and Gamble’s solution. The release of phenanthrene from four
matrices, including corn straw, wheat straw, peanut shells, and
shaddock peels after heat-treatment at the same temperature
(500 �C), showed no obvious differences in Gamble’s solution, but
there were slight differences in ALF. Currently, the number of
studies investigating particulate influences is severely limited.

4.2.2. Particle size
In the atmosphere, particle size varies from several nanometers

to hundreds of microns. Although many studies have been carried
out on the influence of particle size on the oral bioaccessibilities of
metals or organic chemicals using a simulated human gastroin-
testinal tract (Girouard and Zagury, 2009; Yu et al., 2013), the
number of studies investigating the influence of particle size on the
release bioaccessibilities of contaminants using simulated human
lung fluids is still very limited. According to (Xie et al., 2018), the
larger the particle size, the higher is the release rate of e-waste
burning particulate-bound PAHs using ALF and modified Gamble’s
solution with lung surfactants. They suggested that lower reactive
surface area per unit mass with similar carbon content was the
main reason for the higher PAH releases. Similar trends have been
proposed in other studies for HOCs (Mehler et al., 2011; Sun et al.,
2008).

In contrast to organic chemicals, some particulate-boundmetals
exhibited different trends in simple chemical solutions (e.g., nitric
acid, deionized water, or acetate buffer) (Birmili et al., 2006;
Canepari et al., 2010). For example, the solubilities of Pb, Co, and Cd
in fine particulates tested using water as a simulated human lung
fluid were higher than those in coarse particulates (Birmili et al.,
2006). However, Zn and Ba exhibited the opposite trend (Birmili
et al., 2006). In addition, higher Cu release was found for larger
particle sizes in nitric acid, but no relationship between solubility
and particle size in acetate buffer was observed (Canepari et al.,
2010). Although the results of earlier studies may have been
different for various chemicals, the influence of particle size on
contaminant release should be carefully considered.

4.2.3. Organic carbon content
The release of contaminants in simulated lung fluids may be

affected by the physiochemical properties of the particulate com-
positions. Li et al. (2019) observed a strong negative correlation
between desorption and the EC/(ECþOC) (ratio of elemental carbon
to the sum of elemental and organic carbon) rather than with
organic carbon content in PM2.5, especially for high-molecular-
weight PAHs tested using simulated epithelial lung fluid. Howev-
er, to the authors’ best knowledge, few studies have investigated
the release effect of carbon content on particulate-bound metals.
Actually, many studies on release or desorption have observed this
influence. For example, a larger particle size of dichlorodiphenyl-
trichloroethane (DDT)-containing estuarine sediment resulted in
lower desorption using salt water as the desorption medium
because of the higher total organic carbon (TOC) in larger partic-
ulates (Wu et al., 2016). Hence, desorption of DDTs may be driven
by TOC rather than particle size. Similar results were also observed
in oral bioaccessibility measurement using a simulated gastroin-
testinal tract by Ruby et al. (2016), who found that soil TOC content
is inversely related to oral PAH bioaccessibilities. Therefore, the
influence of particulate composition as well as carbon content on
the release bioaccessibilities of contaminants using simulated hu-
man lung fluids should be further considered.

4.2.4. Hydrophobicity
For HOCs, logKOW has an important influence on the solubility of

chemicals in various solutions. The release of particulate-bound
HOCs in simulated lung fluids has been studied by many in-
vestigators. For example, Li et al. (2019) found a decreasing release
of PM2.5-associated PAHs using simulated epithelial lung fluid with
increasing logKOW. Xie et al. (2018) also suggested that the release
of low-ring PAHs in e-waste burning particulates was higher than
that of high-ring PAHs measured using modified Gamble’s solution
and ALF. Similarly, Kademoglou et al. (2018) found that desorption
of phthalate esters and alternative plasticizers in indoor dust or
SRM 2585 in Gamble’s solution and ALF decreased with increasing
hydrophobicity of the chemicals. These studies all demonstrated
that released HOCs in simulated lung fluids had a negative rela-
tionship with their logKOW, which can be mainly attributed to the
compositions of the simulated lung fluids belonging to the aqueous
system and therefore to the lower solubility capacity for HOCs with
higher logKOW.

5. Application of inhalation bioaccessibility in health risk
assessment

Risk assessment is proposed as an approach to avoid, reduce, or
manage hazardous substances that harm human health. To effec-
tively characterize these substances and then to reduce human
health risks, it is necessary to knowwhat the risks are and howhigh
they are. Atmospheric particulate matter such as PM2.5 emitted
from human activities or formed during photochemical processes
can be inhaled and penetrate deeply into the lungs, presenting
potential health risks, including chronic and acute respiratory dis-
ease, cardiovascular disease, lung cancer, and others (Polezer et al.,
2019; Wu et al., 2015). Beyond the risks of atmospheric particulate
matter itself, the harmful effects of organic contaminants and
heavy metals in the particulates cannot be overlooked. It is
currently recommended to factor inhalation bioaccessibility
(including deposition and release bioaccessibility) into the evalu-
ation of human health risk from atmospheric particulate matter by
inhalation.

Nowadays, although many studies on the solubility or release of
contaminants from matrices have been performed, few available
reports have added release bioaccessibilities of pollutants
measured by simulated human lung fluids into health risk assess-
ments by inhalation (Li et al., 2019). As is well known, although the
technologies of simulated human lung fluids and the simulated
gastrointestinal tract were developed simultaneously, they are
developing at different speeds. Compared to the simulated
gastrointestinal tract, the technology of inhalation bioaccessibility
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measurement is more complex and difficult. For oral bio-
accessibility measurement, only the release fraction of contami-
nants should be considered in the human gastrointestinal tract.
However, for contaminants in particulates, both the fraction of
contaminants released from particulates and the fraction of par-
ticulates deposited in the human respiratory tract should be
considered (Fig. 1). In addition, some particulates deposited in the
human respiratory tract, especially the upper respiratory tract, can
be cleared by mucociliary transport from the lung, which means
that the inhaled particulates will reach the gastrointestinal tract.
Consequently, Kastury et al. (2018a) developed an assay for
inhalation-ingestion bioaccessibility to estimate human exposure
to Pb and As in PM10. They found that the highest Pb inhalation-
ingestion bioaccessibility was measured using a simulated lung-
gastric solution. However, the bioaccessibility of As was measured
using a solution that simulated the lung-gastric-small intestinal
tract.

Compared with release bioaccessibility, deposition bio-
accessibility has been occasionally factored into contaminant risk
assessments available in the literature (Yang et al., 2017), although
this assessment factor should be considered as recommended by
the United States Environmental Protection Agency (Liu et al.,
2019a). This factor should also be added to the assessment ac-
cording to the technical guidelines for risk assessment of contam-
inated sites of the National Environmental Protection Standard of
the People’s Republic of China (HJ25.3e2014) (Ministry of Ecology
and Environment of the People’s Republic of China, 2014). In
these recommendations, a deposition fraction of 0.75 is suggested
for air particulates. For example, to better assess the potential
inhalation exposure risks of polychlorinated biphenyls, poly-
chlorinated naphthalenes, polychlorinated dibenzo-p-dioxins, and
dibenzofurans in metallurgical plants, Yang et al. (2017) estimated
inhalation exposure to the chemicals on the basis of an alveolar
fraction of particulates retained in the lung of 0.75. Then the
inhalation exposure to the contaminants was estimated according
to the following equation:

Inh¼ðVr �Cair � fr � tf Þ
.
BW (1)

where Inh (fg TEQ/kg/day) is inhalation exposure of a contaminant;
Vr (20m3/day) is ventilation rate; Cair (fg TEQ/m3) is the ambient air
concentration of the contaminant; tf (dimensionless) is the exposed
time fraction; BW (kg) is the body weight; fr (dimensionless) is the
alveolar fraction retained in lung, i.e., deposition bioaccessibility
named in the present review. In addition, to estimate the health
risks, hazard quotient (HQ) for non-carcinogenic pollutants and
lifetime cancer risk (LCR) for carcinogenic pollutants, respectively,
which are calculated based on the following equations:

HQ ¼ Inh=RfD (2)

LCR¼ Inh� CSF (3)

where RfD (mg/kg-bw/day) is reference dose; CSF is the cancer
slope factor (mg/kg-bw/day)�1. The risk level of 1 � 10�6 is often
used as the lower end of the range of acceptable risk for carcino-
genic pollutants.

However, particle size in the atmosphere varies from several
nanometers to hundreds of microns, with different deposition
mechanisms in the respiratory tract according to size. Depending
on particle size, several deposition mechanisms, including impac-
tion, gravitational sedimentation, and Brownian diffusion, occur in
the respiratory tract (Morman and Plumlee, 2013). It is generally
accepted that only particulate matter with an aerodynamic
diameter less than 10 mm (PM10) is easy to suspend in the atmo-
sphere for a sufficient time and to deposit in the tracheal-bronchial
system together with the alveolar region to cause health risks by
inhalation (Schaider et al., 2007). Impaction takes place when
particulates with aerodynamic diameters larger than 1.5 mm
maintain their trajectory and hit the airway walls in the upper
respiratory tract, although the direction of the air stream changes
along the respiratory tract. For particulates with aerodynamic di-
ameters larger than 0.5 mm, gravitational sedimentation occurs
mainly in mid-size and smaller bronchioles and alveoli. Brownian
diffusion involves sufficiently small particulates with aerodynamic
diameters less than 0.5 mm and molecular bombardment of these
particulates leading to random motion as gas molecules (Carvalho
et al., 2011).

Different particulates lead to different deposition fractions in
the respiratory tract. According to the International Commission on
Radiological Protection (Carvalho et al., 2011), the total deposition
fraction of inhaled particulates decreased in the respiratory tract
with decreasing particle size to submicron dimensions. Then this
value gradually increased back to 100% as particle size decreased
further to nanometric scale. Only 20% of 0.1e1 mm particulates can
deposit in the respiratory tract, and 80% are subsequently exhaled.
It has been argued that the minimum may be determined by the
balance of diffusion of impaction and gravitational sedimentation
mechanisms (Finlay, 2001). Half of inhaled particulates with
0.02e0.1 mm deposit in the alveolar region, and 20% deposit both in
the tracheobronchial and extrathoracic region. Unfortunately, par-
ticulates with aerodynamic diameters less than 0.02 mm mostly
deposit in the extrathoracic region. In addition, Rissler et al. (2017)
investigated the deposition fraction of inhaled particulates over a
wide size range (15e5000 nm) for 67 healthy subjects aged
7e70 years at relaxed breathing using an aerodynamic particle
sizer. They found that the minimum deposition fraction in the
respiratory tract occurred in the 300e500 nm diameter range for
both adults and children. The average deposition fraction for adults
was 11% lower than that for children, although the difference was
not statistically significant (p ¼ 0.21). The gender difference
observed in the deposition fraction was minor and not significant
(6% lower deposition fraction for males, p ¼ 0.13).

Therefore, to estimate more accurately the human exposure to
contaminants in particulates, it is necessary to consider not only
deposition bioaccessibility, but also the influence of particle size on
deposition bioaccessibility. Recently, to estimate more accurately
the human exposure to phthalates in PM2.5 from Shenzhen, China,
Lu et al. (2018) used different deposition bioaccessibility rates for
children and adults, males and females. For different populations,
particulates of different sizes can deposit in varied fractions in
various regions of the respiratory tract, resulting in different bio-
accessible fractions of contaminants in the human lung. These
differences should be taken into account when assessing exposure
to air particulates by inhalation. Unfortunately, there is too little
information on the effect of deposition bioaccessibility on human
exposure to particulates in air through inhalation, although this
factor is recommended to be added to assessments in China and the
United States.

6. Summary and perspective

The harmful effects of contaminants in particulate matter
should not be overlooked because of the possibility that they are
toxic to humans. To estimate human exposure to air contaminants
more accurately, inhalation bioaccessibility should be added to the
calculation. Currently, estimation methods for oral ingestion of
contaminants are shifting away from total contaminant concen-
trations towards methods that factor oral bioaccessibility into the
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estimate. The release bioaccessibilities of contaminants in partic-
ulates has been studied, although these studies were mainly
focused on the factors influencing contaminant release. Although
assessment of release bioaccessibilities of particulate-bound con-
taminants is progressively being used as a low-cost and rapid
approach to assess inhalation exposure risk, significant methodo-
logical differences are tremendous impediments to standardization
of in-vitro methods, especially for external factors including pH,
extraction time, sorption sinks, and the S/L ratio. Existing methods
for release bioaccessibility measurement of particulate-bound
pollutants by simulated human lung fluids lack uniform stan-
dards. The composition of simulated lung fluids and the relative
influencing factors of in-vitromethods can exert a significant effect
on the calculated release of particulate-bound contaminants. In this
present review, the measurement of release bioaccessibilities of
pollutants was reviewed to investigate human exposure and to
refine the criteria of bioaccessibility assays.

Considering the complexity of fluids in the lung with their
biological pH levels and ionic strengths, many studies have
demonstrated that simple chemical solutions and sequential
extraction techniques are not suitable. With the development of
physiologically based simulated human lung fluid, Gamble’s solu-
tion has undergone several modifications while keeping similar
basic chemical constituents. Some modifications have been made
by adding specific chemicals and/or changing the amount of
chemicals added. It is well known that a fraction of particulates will
be swallowed by macrophages within hours after deposition and
that the acidic condition inside macrophages is quite different from
the extracellular neutral environment. Therefore, Gamble’s solution
and ALF are commonly used in current studies to represent two
areas of the lung. However, it is difficult to ascertain which kinds of
solution represent the most appropriate simulation of the inter-
stitial region of the lung because of the lack of validation by in-vivo
methods.

Until now, no research has reported on the harmonisation of
in vitro methods for bioaccessibility and calibration with in vivo
data on bioavailability in terms of particle inhalation, although
studies on the relationship of bioaccessibility and bioavailability via
oral ingestion have been carried out (Juhasz et al., 2009; Yu et al.,
2019). Currently, novel in vitro method containing simulated hu-
man lung fluid should urgently be developed to measure the
deposition bioaccessiblity of particulate matter. In addition, the
experimental parameters should be optimized based on the
deposition data obtained by subjects. Subsequently, a lung simu-
lator containing simulated human lung fluid simulating the process
of human breathing was developed, and the particulate matter
deposits in the lung simulator (Yu et al., 2020). Then contaminants
dissolved in simulated human lung fluids will be collected and
particle-associated insoluble fractions will be leached by organic
solvents. Thus, insoluble bioaccessible contaminants can be incor-
porated into predictive models. Of course, this is just the beginning.
Much more studies should be conducted in the future.

Currently, there are two major challenges for the measurement
and application of inhalation bioaccessibility in human health risk
assessment. First, a unified, accurate, stable, simple, and systematic
in-vitro release bioaccessibility method is needed that is biologi-
cally relevant. As the authors suggested in the section on selection
of physiological parameters, the release bioaccessibility can be
measured under a worst-case scenario. However, in terms of our
knowledge, the authors believe that the investigation on release
bioaccessibility using simulated human lung fluid is more suitable
to explore the release mechanism of pollutants in particulate
matters, rather than using the release bioaccessibility obtained in
the assessment of human health risk through inhalation, which is
similar to oral bioaccessibility measured in a simulated human
gastrointestinal tract. This is the case because the matrices entering
human bodies have very different behavior between the human
lung and the gastrointestinal tract, as mentioned earlier. Second, to
perform an accurate assessment of the human health risk of
airborne particulates through inhalation and to add inhalation
bioaccessibility to the assessment, the factor used should be
deposition bioaccessibility, rather than release bioaccessibility.
Actually, although some data are available on the deposition bio-
accessibility of inhaled particulates through inhalation by means of
modeling approaches and animal subjects, the results of which
have been well reviewed by Wei et al. (2018), the data on deposi-
tion bioaccessibility of air particulates in the human lung are too
limited. In addition, the lack of in-vivo and in-vitro correlations for
particle-bound metal(loid)s or organic contaminants in various
matrices is a knowledge gap when this deposition bioaccessibility
is used to assess exposure risk. With the further development of
online particulate measurement techniques, more deposition data
in the human lung can be obtained, similar to the study by Rissler
et al. (2017). Overall, there is a long way to go before an in-vitro
inhalation bioaccessibility measurement becomes available and
before its application to the human health risk assessment of
contaminants in particulates by inhalation becomes commonplace.
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