
Article

Global flux of perfluoroalkyl acids from glaciers in a
warming climate

Graphical abstract

Highlights

• Global glacial release flux of PFAAs is estimated to be about

3,500 kg per year

• PFAAs carried in suspended particles in glacial meltwater

should not be ignored

• Arctic fjords and glaciers in the southern Tibetan Plateau are

of highest concern

• The release flux of PFAAs in Arctic and Asian glaciers will

increase exponentially

Authors

Yunqiao Zhou, Boyuan Hu,

Xiaoping Wang, ..., Dongfeng Li,

Kevin C. Jones, Derek C.G. Muir

Correspondence

wangxp@itpcas.ac.cn (X.W.),

jjfu@rcees.ac.cn (J.F.)

In brief

Global warming is accelerating the

release of perfluoroalkyl acids (PFAAs)

from melting glaciers, yet their release

fluxes remain poorly quantified on a

global scale. This study combines field

and literature data with machine learning

and a glacier mass balance model to

estimate PFAA fluxes from glaciers

worldwide. By quantifying fluxes in both

dissolved and particle-bound phases

under three warming scenarios, the study

identifies regional hotspots of concern

and defines a critical time window for

action. These findings shed light on PFAA

cycling in the cryosphere and inform

policy responses.

Zhou et al., 2025, One Earth 8, 101453

December 19, 2025 © 2025 Elsevier Inc. All rights are reserved, including

those for text and data mining, AI training, and similar technologies.

https://doi.org/10.1016/j.oneear.2025.101453 ll

mailto:wangxp@itpcas.ac.cn
mailto:jjfu@rcees.ac.cn
https://doi.org/10.1016/j.oneear.2025.101453


Article

Global flux of perfluoroalkyl acids
from glaciers in a warming climate

Yunqiao Zhou,1,13 Boyuan Hu,2,3,13 Xiaoping Wang,1,4,14,* Jianjie Fu,2,3,5,* Ian T. Cousins,6 Xi Bi,7 Lanxiang Wang,1,4

Mengke Chen,1,4 Chuanfei Wang,1 Huike Dong,1 Shaoting Ren,1 Zimeng Wang,8 Taicheng An,9 Dongfeng Li,10

Kevin C. Jones,11 and Derek C.G. Muir12

1State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese

Academy of Sciences, Beijing 100101, China
2State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy

of Sciences, Beijing 100085, China
3School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
4University of Chinese Academy of Sciences, Beijing 100049, China
5School of Ecology and Environment, Tibet University, Lhasa 850000, China
6Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden
7School of Economics and Management, China University of Petroleum (Beijing), Beijing 102249, China
8Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
9School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of

Technology, Guangzhou 510006, China
10Key Laboratory for Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking

University, Beijing 100871, China
11Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, UK
12Aquatic Contaminants Research Division, Environment & Climate Change Canada, Burlington, ON L7S 1A1, Canada
13These authors contributed equally
14Lead contact

*Correspondence: wangxp@itpcas.ac.cn (X.W.), jjfu@rcees.ac.cn (J.F.)

https://doi.org/10.1016/j.oneear.2025.101453

SUMMARY

Climate warming is accelerating glacier melting, releasing human-made chemicals that have been trapped in

glaciers for decades. Among these are perfluoroalkyl acids (PFAAs), highly persistent and toxic pollutants

that threaten aquatic ecosystems, fisheries, and human health. Despite global efforts to curb PFAA emis-

sions, their continued release from melting glaciers represents a legacy source that remains unquantified

on a global scale. Here, we combine field and literature data with machine learning and a glacial mass balance

model to estimate current and future PFAA fluxes via both dissolved and particle-bound phases. We find that

global glaciers release approximately 3,500 kg of PFAAs annually, with suspended particles contributing

around 12% of this amount. Projected trends suggest future release potential will rapidly boom through

2040 under extreme climate warming. These findings fill a critical gap in the global PFAA budget and under-

score the urgency of coordinated action on both legacy pollutant management and climate mitigation.

SCIENCE FOR SOCIETY Perfluoroalkyl acids (PFAAs) are industrial pollutants that circulate globally and

accumulate in cold regions, including glaciers. They pose significant ecological and human health risks

and are known for their extreme persistence. As glaciers melt, a process accelerated by global warming,

PFAAs previously stored in ice are released into the environment. Our study quantifies PFAA fluxes from

global glaciers, identifying key release hotspots including the Arctic and South and Central Asia. These hot-

spots include important fisheries in Arctic fjords and drinking water supplied from Himalayan glaciers. Con-

trolling PFAA pollution in these regions will thus require reducing PFAA pollution at the source and mitigating

global warming to slow glacial melting. This calls for an interdisciplinary collaboration bringing together sci-

entists, local communities, and policymakers to develop effective mitigation strategies on these dual threats.
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INTRODUCTION

In the Anthropocene, chemical pollution has become a defining

challenge as novel entities for planetary health.1–3 Among these,

per- and polyfluoroalkyl substances (PFASs), known as ‘‘forever

chemicals’’ due to their extreme persistence, have attracted

widespread attention.4,5 PFASs are a large class of human-

made chemicals that have been widely used in industrial and

consumer products since the mid-20th century.6 Perfluoroalkyl

acids (PFAAs) are the best-studied subgroup of PFASs,

including compounds listed for phase-out under the Stockholm

Convention due to a series of adverse effects.7,8 Alarmingly,

even in remote regions, the concentrations of perfluorooctanoic

acid (PFOA) in rainwater greatly exceed health advisory levels

(4 pg L− 1),9 indicting that the planetary boundary for PFAA pollu-

tion has been exceeded worldwide.10

Glaciers in the remote cryosphere are critical reservoirs for

PFAAs. PFAAs can undergo long-range atmospheric transport

and subsequently deposit onto glacial surfaces through both

dry and wet deposition processes due to the cold-trapping

effect.11 Measurable concentrations of PFAAs have been de-

tected in glaciers in the Arctic,12 Antarctica,13 and high-altitude

alpine regions,14,15 ranging from hundreds to thousands of

picograms per liter. As ‘‘forever chemicals,’’ PFAAs can persist

in glaciers for decades, even after their primary emissions are

controlled,16,17 posing long-term threats to fragile ecosystems,

particularly in sensitive regions such as the Arctic and the

Tibetan Plateau.

Previously trapped PFAAs in glaciers are being released under

the warming climate,18,19 creating an emerging threat to proglacial

ecosystems. Signals of PFAA meltwater sources have been iden-

tified in the contaminant profiles of sediment cores and in the biota

from proglacial environments,20,21 indicating the re-release of

these previously accumulated chemicals. Once released, PFAAs

can undergo biomagnification via the food chain from benthic in-

vertebrates to top predators,22,23 thereby threatening aquatic di-

versity, fisheries, and even human health. For example, high con-

centrations (∼500 ng mL− 1) were found in blood serum from East

Greenland Inuit who rely on traditional marine food, despite rela-

tively low environmental concentrations (0.0005 ng mL− 1).24

Despite growing recognition of this emerging threat, several

knowledge gaps remain. Most notably, we lack a comprehensive

estimate of the magnitudes and spatial patterns of PFAA fluxes

from glaciers on a global scale. Existing studies are limited to a

few sampling sites. To date, only two studies report the release

flux of PFAAs downstream: one reporting an annual flux of 1.6 ±

0.7 kg in the Canadian High Arctic,25 and another estimating

about 0.5 kg year− 1 from a single glacier on the central Tibetan

Plateau.26 The lack of global flux data limits our understanding

of how glacial melt contributes to global PFAA budget and hin-

ders the identification of pollution hotspots.

Furthermore, current assessments of PFAA transport focus

on dissolved phase while overlooking the contribution of sus-

pended particles generated through glacial erosion and perma-

frost thawing.17,18 These suspended particles, mobilized at

increasing rates under accelerated glacial melting, may serve

as important vectors for PFAAs, especially for more toxic long-

chain compounds.19,20 As climate warming accelerates erosion

and sediment mobilization, the omission of particle-bound trans-

port may result in underestimation of total PFAA fluxes and asso-

ciated health risks.

Here, we address these critical knowledge gaps by quantifying

current and future flux of PFAAs released from glaciers world-

wide via both dissolved phase and particle-bound particles.

Our analysis includes a global dataset of field data from Tibetan

glaciers and literature data from global glaciers, the application

of machine learning (ML) and a glacial mass balance model,

and the prediction of release fluxes through the end of the 21st

century. Our findings reveal that approximately 3,500 kg of

PFAAs are released from global glaciers per year, with the Arctic

and South and Central Asia identified as major export regions.

Suspended particles contribute around 12% of the total flux,

highlighting their non-negligible impact. The release flux is pro-

jected to increase rapidly through 2040, leaving a narrow time

window for effective actions. Our estimates and predictions

are crucial for a better understanding of the role of glacial melting

on PFAA cycling in the global cryosphere.

RESULTS

Methods summary

To evaluate the global flux of PFAAs from glaciers, we posed

three research questions. (1) What are the magnitudes and

spatial patterns of PFAA release fluxes from glaciers on a global

scale? (2) What is the role of the particle-bound phase in total

PFAA export? (3) How might these fluxes change under future

climate scenarios?

To answer these questions, we first conducted field sampling

on seven glaciers across the Tibetan Plateau, measuring 13 indi-

vidual PFAAs in both dissolved phase and suspended particles.

These field data were integrated into a global dataset comprising

739 samples from 49 glaciers across eight major glacial regions

worldwide. Due to the scarcity of concentrations in suspended

particles, we developed predictive models for log-transformed

particle-water partition coefficients (logKd), using both traditional

curve-fitting and ML approaches. LogKd values were predicted

based on environmental parameters (e.g., water temperature

and particulate organic carbon) and molecular descriptors of

PFAAs. The best-performing ML model was finally selected

from multiple candidates based on its accuracy and stability.

We then coupled the predicted logKd with glacial runoff vol-

umes derived from glacial mass balance model to quantify

annual release flux of PFAAs via both dissolved phase and

suspended particles. For regions with high export fluxes, we

further identified pollution hotspots using threshold-based

spatial analysis of PFAA concentrations in water and sediment.

Finally, we integrated climate projections under three shared

socioeconomic pathways (SSP126, SSP245, and SSP585) to

simulate global glacial PFAA exports from 2020 to 2100. This

integrative framework enables a comprehensive assessment of

current and future glacier-sourced PFAA fluxes on a global scale.

PFAAs in glacial meltwaters of the Tibetan Plateau

To characterize the current status of PFAAs in high-altitude glacial

regions, we measured 13 individual PFAAs (Table S1) in meltwater

and associated suspended particles from seven glacier regions

across the Tibetan Plateau. Figure 1 illustrates the upstream-to-

downstream arrangement of sampling sites, along with average

ll
Article

2 One Earth 8, 101453, December 19, 2025

Please cite this article in press as: Zhou et al., Global flux of perfluoroalkyl acids from glaciers in a warming climate, One Earth (2025), https://doi.org/

10.1016/j.oneear.2025.101453



concentrations and compositions of Σ13PFAAs. The highest con-

centration (5,430 pg L− 1) was observed in the Rongbuk glacial re-

gion of Mount Everest (Figure 1B), while concentrations at the

other sites were generally below 1,200 pg L− 1. Across all sites,

short-chain PFAAs, consisting of <C8 perfluoroalkyl carboxylic

acids (PFCAs) and <C6 perfluoroalkyl sulfonic acids (PFSAs),

dominated the PFAA profiles, accounting for 68%–96% of the to-

tal concentrations (Figure 1C).

PFAAs released through glacier ablation can be transported

downstream either in the dissolved phase or adsorbed onto

suspended particles. We found that concentrations of most

short-chain PFAAs in the dissolved phase increased from up-

stream to downstream sites (Figure S1), likely due to their

higher solubility and mobility in water. In contrast, long-chain

PFAAs (≥C8 PFCAs and ≥C6 PFSAs) adsorbed onto sus-

pended particles exhibited the opposite trend, with their con-

centrations decreasing from upstream to downstream

(Figure S1). In other words, long-chain PFAAs associated with

suspended particles tend to accumulate in the headwater re-

gions. The opposing spatial trends of PFAA concentrations dur-

ing transport (Figure S1) indicate the crucial need for accurate

PFAA concentrations in both dissolved and particle-bound

phase in glacier-fed systems.

Occurrence of PFAAs in global glacial regions

To place Tibetan data in a broader context, we compiled a global

database of Σ13PFAA concentrations from more than 49 gla-

ciers, including field data from this study (n = 59) and previous

research (n = 680) (Table S2). Figure 2 presents the locations

of these glacial sites across eight major glacial regions, and cor-

responding average Σ13PFAA concentrations (bold numbers) at

each region. Pie charts depict the relative composition of individ-

ual PFAAs at each region.

Across the global dataset, PFAA concentrations in glacial

meltwater (Table S3) ranged from several hundred to several

thousand picograms per liter, exhibiting distinct regional varia-

tion (Figure 2). Although the data exhibited fluctuations, the

average concentrations of Σ13PFAAs were relatively high

(4,486 pg L− 1) in glacial regions in Arctic Canada (ACG)

(Figure 2) (i.e., Lake Hazen watershed, see Table S2), and those

near the Greenland Sea exhibited much lower levels (297 pg

L− 1). Similar to the Tibetan Plateau, short-chain PFAAs predomi-

nated in most regions, accounting for 62%–80% of the total

concentrations in areas such as ACG, Central Europe (CEG),

and South and Central Asia (SCAG) (Figure 2, pie charts).

However, field data on PFAAs associated with suspended

particles remain scarce in global glacial regions. To overcome

this limitation, we applied the particle-water partition coefficient

(Kd) to bridge the field-measured dissolved PFAA concentrations

to particle-bound concentrations.

Predicting particle-water partition coefficient

The Kd describes the distribution of PFAAs between the dis-

solved and particle-bound phases. However, Kd values are

highly variable and influenced by environmental parameters

and molecular descriptors of PFAAs. Therefore, we selected

key influencing factors, including temperature (Tw), particulate

organic carbon (POC), logKow-ionic, and PFAA type, for predicting

logKd. Details on selecting these factors and model validation

procedures are provided in the methods section.

Initial attempts to predict logKd using curve-fitting models

yielded limited performance, with coefficients of determination

Figure 1. Sampling sites and average concentrations and compositions of 13 perfluoroalkyl acids in seven glacial regions of the Tibetan

Plateau

Sampling sites from upstream to downstream (A) and average concentrations (B) and compositions (C) of 13 perfluoroalkyl acids (PFAAs) in seven glacial regions

of the Tibetan Plateau. Error bars in (B) represent the standard deviation of all PFAA concentrations within each glacial region. The seven glacial regions are RB,

Rongbuk glacier; KG, Korchung Gangri glacier; ZD, Zhadang glacier; GL, Galongla glacier; PL, Parlung No. 4 glacier; QY, Qiangyong glacier; and RC, Rijie Cojia

glacier. U, M, and D in (A) represent upstream, midstream, and downstream sites, respectively.
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(R2) ranging from 0.48 to 0.64 (Note S1). To improve prediction ac-

curacy, we developed several ML models, including support vec-

tor machines (SVMs), decision trees (DTs), random forests (RFs),

and extreme gradient boosting (XGBoost). Among these, the

XGBoost model (XGBoost-ML) outperformed others in both

explanatory power and stability (R2 = 0.95 for the training set and

Q2 = 0.85 for the test set). The best-performing XGBoost-ML

showed strong agreement with field-measured logKd for all individ-

ual PFAAs in the training set (Figure 3A). Almost all of the predicted

logKd in the test set fell within an order of magnitude (±1 range) of

the measured values, except oneoutlier (Figure 3B, white squares),

which was measured with high POC values (up to 10%) (Table S4).

In summary, the XGBoost-ML outperforms traditional curve-

fitting methods and other ML models in predicting logKd.

With the combination of model-predicted logKd with field-

measured dissolved PFAA concentrations (Table S2), the con-

centrations of PFAAs on suspended particles across the eight

global glacial regions were calculated. The results are provided

in Table S5.

Global fluxes of PFAAs from glaciers

Using dissolved and estimated particle-bound concentrations

(Tables S3 and S5) combined with modeled glacial runoff vol-

umes, we quantified the annual release fluxes of individual

Figure 2. Average concentrations and compositions of 13 perfluoroalkyl acids in eight glacial regions and sampling sites in the Arctic and

Asian regions

Average concentrations and compositions of 13 perfluoroalkyl acids (PFAAs) in (A) eight glacial regions and sampling sites in the (B) Arctic and (C) Asian regions.

The dots represent sample locations in different glacial regions. Glaciers are shown in blue, ice sheets are shown in white, and the black lines indicate the outlines

of different glacial regions from the Randolph Glacier Inventory. The eight glacial regions are ① West Canada and USA (WCUG), ② Arctic Canada (ACG), ③
Greenland ice sheet (GIS), ④ Arctic Europe (AEG), ⑤ North Asia (NAG), ⑥ Central Europe (CEG), ⑦ South and Central Asia (SCAG), and ⑧ Antarctic and

Subantarctic ice sheet (AIS). The pie charts represent the composition of PFAAs in each glacial region, and bold numbers present the average concentration and

standard deviation of PFAAs. The 13 PFAAs are perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), per-

fluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid

(PFUdA), perfluorododecanoic acid (PFDoA), perfluorotridecanoic acid (PFTrDA), perfluorobutane sulfonic acid (PFBS), perfluorohexane sulfonic acid (PFHxS),

and perfluorooctane sulfonic acid (PFOS).
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PFAAs from eight major glacial regions worldwide, with data listed

in Table S6. Table 1 summarizes the release fluxes of Σ13PFAAs

via the dissolved phase and suspended particles for each region.

The total estimated global flux of Σ13PFAAs was 3,547 ± 375 kg

year− 1, with the dissolved phase contributing 3,117 ± 165 kg

year− 1 (∼88%) and suspended particles accounting for the re-

maining 430 ± 210 kg year− 1 (∼12%) (Table 1). In most glacial re-

gions, the contribution of suspended particles remained less than

15%. However, in sediment-rich systems such as the Greenland

ice sheet (GIS), suspended particles contributed up to 51% of

the total flux, likely due to high particle loads in glacial outflows.

Differences in the chain length of PFAAs influenced release

fluxes in dissolved and particle-bound phases. In the dissolved

phase, short-chain PFAAs dominated, with an estimated flux of

1,823 ± 97 kg year− 1, compared to 1,129 ± 61 kg year− 1 for

long-chain compounds (Table S6). In contrast, the particle-bound

phase was enriched in long-chain PFAAs, which contributed 238 ±

63 kg year− 1, nearly three times the flux of short-chain compounds

(87 ± 14 kg year− 1) (Table S6), consistent with their stronger sorp-

tion affinities.

Substantial regional variations in total PFAA fluxes were also

observed (Table 1). The SCAG region contributed the highest

load, with an estimated flux of 1,394 ± 86 kg year− 1, accounting

for nearly 40% of global glacial PFAA export. This was followed

by the ACG (698 ± 48 kg year− 1), Arctic Europe (AEG) (564 ±

25 kg year− 1), Western Canada and the USA (WCUG) (426 ±

15 kg year− 1), and GIS (316 ± 190 kg year− 1). Collectively, these

five regions represented over 95% of the total global flux. High

glacial runoff volumes, ranging from 212 to 547 km3 year− 1

(Table 1), and relatively high PFAA concentrations (Figure 1)

contributed to their dominant role.

In contrast, smaller glaciers such as those in North Asia (NAG)

and Central Europe (CEG) exhibited limited annual PFAA fluxes

(<20 kg year− 1), due to both lower glacial runoff volumes

(Table 1) and moderate PFAA levels (Figure 2). The Antarctic

and Subantarctic ice sheet (AIS) also contributed modestly

(118 ± 10 kg year− 1), consistent with its relatively isolated loca-

tion from PFAA emission sources.

Priority locations of concern

As mentioned above, the Arctic and SCAG regions present

hotspot export zones for PFAA releases from melting glaciers.

Figure 3. Comparison of the measured

logKd for perfluoroalkyl acids in glacial

and non-glacial regions with the predicted

logKd driven from the XGBoost algorithm

(A) The training set and (B) the test set. The blue

and yellow squares indicate the ratios of

measured logKd and predicted values that fall

within ±1 log unit for samples from glacial and

non-glacial regions, respectively. The white

square represents the ratio of the measured logKd

and predicted logKd that falls outside ±1 log unit,

with only one datum observed in the non-glacial

regions.

To further identify the locations of

concern that should be prioritized for

protection, we compiled the data on

PFAAs in water and sediment from these regions (Tables S7

and S8).

The average concentrations of Σ13PFAAs in water (2 ng L− 1)

and sediments (1 ng g− 1) were obtained and served as baselines

for assessing priority locations of concern. Levels of concern are

based on exceeding the average by one, two, and three times,

respectively. Figure 4 illustrates priority locations of concern

for PFAAs with relatively high concentrations in water or

sediment in the Arctic and SCAG regions. Red circles on the

map indicate sites influenced by water, while purple circles

represent those influenced by sediment. The higher the concen-

tration of PFAAs, the larger the buffer zone. Detailed locations of

each site are available in Tables S7 and S8.

In the Arctic, locations of concern are categorized into four

main regions: Svalbard, Arctic Europe, the Canadian Arctic ba-

sins, and the Chukchi Sea (Figure 4A). Svalbard exhibits elevated

PFAA levels in both water and sediment, indicating a significant

overlap in environmental risk. In Arctic Europe, areas of high

concern are identified in coastal sediments along the Norwegian

Sea and the Barents Sea. Additionally, northern Swedish gla-

ciers are classified as high-concern sites due to high PFAA con-

centrations in glacial runoffs. In the Canadian Arctic basins, such

as Lake Hazen and Lake B35, impacts on local wildlife, including

polar bears and Arctic foxes, have been observed in surrounding

areas such as Grise Fjord and Arviat (Figure 4A, orange triangle).

Meanwhile, sediments near the coast of the Chukchi Sea indi-

cate relatively high environmental risk.

Future release potential under climate warming

Apart from regional impacts, understanding how the release of

PFAAs from glaciers change under future climate warming is

also imperative. Figures 5A and 5B illustrate the future release

potential of Σ13PFAAs from global glaciers in the 21st century

via dissolved and suspended-particle phases under three SSP

scenarios, i.e., SSP126 (low emissions), SSP245 (intermediate

emissions), and SSP585 (high emissions). The release potential

refers to a predicted possibility of PFAA fluxes under future

climate scenarios.

Under SSP126, the release potential of Σ13PFAAs is expected

to remain relatively stable by the end of the 21st century

(Figures 5A and 5B, SSP126 scenario). In contrast, under

SSP245—and especially under SSP585—the potential Σ13PFAA
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fluxes exhibit increasing trends throughout the century. Under

SSP585, the average release fluxes of Σ13PFAAs via the dissolved

phase could reach up to ∼13,000 kg year− 1, and those via sus-

pended particles may reach ∼2,500 kg year− 1, which represents

a 6-fold increase compared to 2020 levels (Figures 5A and 5B,

SSP585 scenario). By 2040, the release potential is expected to

be less than double those observed in 2020; however, after

2040, the rate of increase is projected to boom rapidly. These

results identify the next 15 years as a critical window for global ef-

forts to mitigate PFAA pollution and combat climate change.

Regionally, under SSP585, ACG and GIS are predicted to

experience a nearly 10-fold increase in the release potential of

dissolved PFAAs by the end of this century. In contrast,

WCUG, AEG, SCAG, and AIS are expected to have about a

2-fold increase (Figure S2). For the suspended-particle phase,

the release potential in ACG and GIS is projected to increase

by ∼8-fold, while WCUG, AEG, SCAG, and AIS are anticipated

to experience about a 2-fold increase (Figure S3).

However, these estimates may be conservative, as they as-

sume that the rate of sediment transport—and thus particle-

associated PFAA flux—remains constant under future climate

warming. Actually, glacial sediment export has already doubled

over the past 30 years in regions such as the Arctic coastline and

the Himalayas.33 If this trend continues, doubling every 30 years,

the release potential of Σ13PFAAs associated with suspended

particles in the Arctic (Greenland) region is expected to undergo

an exponential increase, reaching approximately 50-fold above

2020 levels by 2100 under the SSP585 scenario (Figure 5C). In

the SCAG region, particle-bound PFAA fluxes are also projected

to rise substantially, with a nearly 10-fold increase over the same

period (Figure 5D).

DISCUSSION

Although glaciers are increasingly recognized as secondary

sources of pollutants, the magnitude and mechanisms of PFAA

release, particularly via the particle-bound phase, have remained

largely unresolved on a global scale. Our study addresses this

gap by providing the first quantitative estimate of both dissolved

and particle-bound PFAA releases from glaciers worldwide,

revealing that glacial melt can export thousands of kilograms

of legacy PFAAs to downstream ecosystems each year, with

significant regional and chemical partitioning patterns.

In the following context, we first evaluate limitations of

uncertainty in our global PFAA flux estimates. We then assess

whether glaciers currently act as net sources or sinks of PFAAs

by comparing the global patterns of release and depositional

fluxes derived from the GEOS-Chem model. These glacial fluxes

were further compared to global PFAA emission inventories to

clarify their relative contribution and to identify locations of

high concern. Beyond quantification, we explore the potential

adverse effects of increased PFAA outflows, particularly the

role of particle-bound transport. Finally, we discuss strategies

for controlling future PFAA releases from glaciers under climate

warming.

Limitations

Several sources of uncertainty may influence the accuracy of

our global PFAA flux estimates. First, the limited number of

sampled glaciers within each region may not fully capture spatial

heterogeneity, potentially introducing bias when extrapolating

to the regional scale. Temporal uncertainty also arises due to

the seasonal variability of both meltwater runoff34 and PFAA

Table 1. Release fluxes of perfluoroalkyl acids via the dissolved phase and suspended particles from glaciers in eight glacial regions

globally, compared with the depositional fluxes

Glacial

region

Glacial

area (km2)

Glacial runoff

(km3 year− 1)

ACSP

(mg L− 1)

Release fluxes

(kg year− 1)

Depositional fluxes of
∑

10PFCAs estimated

by the GEOS-Chem

model (kg year− 1)27

Dissolved phasea

Suspended

particlesa ∑
13PFAAs

∑
10PFCAs Minimum Maximum

WCUG 101,249 400 182 380 ± 8.6 (89%) 46 ± 6.0 (11%) 426 ± 15 388 ± 13 16.9 79.6

ACG 146,016 212 97 683 ± 47 (98%) 14 ± 1.3 (2%) 698 ± 48 683 ± 47 17.5 81.8

GIS 1,718,000 547 881 153 ± 8.4 (49%) 162 ± 181 (51%) 316 ± 190 179 ± 42 96.2 206

AEG 88,498 146 91 520 ± 18 (92%) 44 ± 7.3 (8%) 564 ± 25 330 ± 11 14.2 102

NAG 2,410 7 91 9.1 ± 0.5 (85%) 1.7 ± 0.5 (15%) 11 ± 0.9 8.3 ± 0.6 0.39 2.89

CEG 2,075 9 356 18 ± 0.3 (88%) 2.6 ± 0.1 (12%) 21 ± 0.4 20 ± 0.3 3.32 3.32

SCAG 97,604 352 500 1,244 ± 73 (89%) 151 ± 13 (11%) 1,394 ± 86 1,159 ± 60 151 205

AIS 13,746,463 48 73 109 ± 9.0 (93%) 8.2 ± 1.1 (7%) 118 ± 10 116 ± 10 28.9 220

Total – – – 3,117 ± 165 (88%) 430 ± 210 (12%) 3,547 ± 375 2,884 ± 184 329 900

WCUG, Western Canada and USA; ACG, Arctic Canada; GIS, Greenland ice sheet; AEG, Arctic Europe; NAG, North Asia; CEG, Central Europe; SCAG,

South and Central Asia; AIS, Antarctic and Subantarctic ice sheet; ACSP, average concentration of suspended particles in each glacial region reported

previously.

The areas of the GIS and AIS were obtained from Pfeffer et al.28 and Liston and Winther,29 respectively. The other data are available from the Randolph

Glacier Inventory version 6.0 (http://www.glims.org/RGI/). The glacial runoffs of the GIS and AIS are available from Tedesco et al.30 and Liston and

Winther,29 respectively, with the other data collected from Bliss et al.31 The depositional fluxes of
∑

10PFCAs estimated by the GEOS-Chem model

represent the average value for 2013–2015; the historical depositional fluxes might be much higher.
aData presented as release fluxes (percentage of total fluxes).
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concentrations,19 as most field campaigns were conducted

during limited time windows. In some Arctic regions, the scarcity

of glacial meltwater data led to the use of PFAA concentrations in

adjacent seawater (Table S2), which may underestimate fluxes

due to dilution effects. These factors likely contributed to the

large standard deviations observed in both PFAA concentrations

(Figure 2) and flux estimations (Table 1).

Second, data gaps in key regions remain. In particular, no

observational data are currently available for Patagonia and

the southern Andes. Glaciers in these regions are among the

most rapidly retreating on Earth.35 This lack of data would lead

to an underestimation of global glacier-sourced PFAA fluxes.

Moreover, geopolitical dynamics, such as international regula-

tions on PFAA production, industrial substitution of legacy

PFAAs, and the geographic relocation of manufacturing facil-

ities, could alter emission patterns over time. However, due to

the lack of reliable global models and transparent reporting,

the influence of these political and economic factors could not

be quantitatively assessed.

Finally, analytical uncertainties also exist. Perfluorobutanoic

acid (PFBA), a prevalent short-chain PFAA, has been inconsis-

tently reported in previous studies due to analytical chal-

lenges.36,37 To assess the impact of its exclusion, we recalculated

fluxes for Σ12PFAAs (excluding PFBA), with total fluxes of 2,250 ±

306 kg year− 1, including 18% transported via suspended particles

(Table S6). The regional flux ranking remained consistent—SCAG

(536 ± 39 kg year− 1), AEG (449 ± 24 kg year− 1), and WCUG (426 ±

15 kg year− 1)—but the total global flux was substantially lower,

underscoring the importance of including PFBA in future assess-

ments. Improved analytical techniques, such as high-resolution

mass spectrometry,38 are essential for accurately quantifying

low-mass PFAAs and ensuring comparability across studies in

the future.

Global patterns of release and depositional fluxes

Based on the field measurements, predicted logKd, and

modeled glacial runoffs, we estimated that glaciers globally

release approximately 3,547 ± 375 kg year− 1 of Σ13PFAAs into

downstream environments, with about 12% transported via

suspended particles. While previous studies have only quantified

dissolved-phase fluxes at the regional scale,25,26 our study ex-

tends this assessment to the global scale and incorporates the

often overlooked particle-bound phase.

To evaluate whether PFAA release is in balance with atmo-

spheric inputs, we compared regional glacial output fluxes with

deposition fluxes estimated by the GEOS-Chem global

atmospheric chemistry model (Table 1)27 and the estimates

derived from ice core records in the same glacial regions

(Table S9).14,15,39–41 Deposition fluxes showed substantial

regional variability, with AIS ≈ GIS ≈ SCAG > ACG ≈
WCUG > CEG ≈ NAG (Table 1). The high depositional fluxes in

AIS and GIS were primarily due to their large glacial surface

areas. In contrast, the comparable flux in SCAG can be linked

to the high deposition concentration of PFAAs from nearby emis-

sion sources.42,43

Since GEOS-Chem model only include PFCAs, we focused on

the comparison on Σ10PFCAs (Table 1). Our results show that the

global average glacial release fluxes of Σ10PFCAs (∼2,900 kg

year− 1) were about 3–9 times higher than the modeled atmo-

spheric deposition inputs (329–900 kg year− 1). Regionally, the

Figure 4. Geographical distribution of perfluoroalkyl acid areas of concern in the Arctic and South and Central Asia

Distribution of perfluoroalkyl acid (PFAA) areas of concern in (A) the Arctic and (B) the South and Central Asia. The red circle and purple circle represent the sites of

concern for water and sediment, respectively. The orange triangles mark areas of potential biodiversity loss due to high PFAA levels found in polar bears and

Arctic foxes, as reported in previous studies.32 Detailed data for the buffer zone are provided in Tables S7 and S8, with average concentrations for water

and sediment being approximately 2,000 pg/L and 1,000 pg/g, respectively. Buffer zones I, II, and III represent areas where PFAA concentrations in water and

sediment exceed the regional average concentration by 1-fold, 2-fold, and more than 3-fold, corresponding to impact zones of 100 km, 200 km, and 300 km,

respectively.
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glacial release flux exceeds the maximum depositional flux in all

glacial regions except for the AIS. This was obvious in ACG and

SCAG, where the export fluxes of Σ10PFCAs were 6–8 times

higher than the maximum import fluxes (Table 1), followed by

CEG and WCUG, due to rapid glacier ablation.31 These findings

indicated that under climate warming most glaciers were expe-

riencing a net loss of PFAAs.

By contrast, the maximum depositional fluxes for the AIS

were about 2-fold higher than the current release fluxes of

Σ10PFCAs, suggesting that the AIS may still act as a temporary

sink for PFAAs.41 Therefore, accumulation of PFAAs in the AIS

should be continuously monitored,41,44 particularly concerning

their adverse effects on sensitive Antarctic wildlife such as

penguins.45

Intriguingly, based on results from the Devon, Meighen,

Melville, and Agassiz ice caps in 2005,46 the total depositional

flux of just four PFCAs, namely PFOA, perfluorononanoic

acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroun-

decanoic acid (PFUdA), to the Arctic (north of 65◦ N) was

approximately 2,603 kg year− 1. This value is almost an order

of magnitude higher than the estimated depositional fluxes for

the Arctic regions (ACG + GIS + AEG = 128–390 kg year− 1)

derived from the GEOS-Chem model for the period 2013–

2015 (Table 1). The substantial decline in deposition flux during

2013–2015 may be attributed to the gradual phase-outs of

PFAAs.47 This discrepancy suggests that large amounts of

PFAAs had already been deposited and stored in Arctic glaciers

during earlier decades.

Known as ‘‘forever chemicals,’’ PFAAs deposited on snow/

ice are likely to undergo minimal degradation,11 resulting in

their long-term storage within the glaciers for decades to cen-

turies.48 With continuous global warming, the previously stored

PFAAs in glaciers (aged ice) would be largely released at an

increasing rate.49,50

Glacial fluxes compared to global PFAA emissions

While glaciers have been identified as secondary sources of

PFAAs, their contribution remains limited in the context of global

emissions. PFAAs have been widely used in industrial and

household applications since the mid-20th century.6 Under a

high-emission scenario, global annual emissions of Σ10PFCAs

around 2020 were estimated at approximately 400 tons.51 In

comparison, the total glacial release fluxes of Σ10PFCAs are

approximately 2.9 tons per year (Table 1), representing only

about 0.7% of annual global emissions and indicating a limited

contribution. Similarly, the input of PFAAs to the Arctic via glacial

meltwater is also minor compared to the hundreds of tons trans-

ported by sea-spray aerosols.37

Nevertheless, the local impact of glacial release on PFAA dis-

tribution and wildlife in glacial regions remains significant. As

observed in Figure 4A, PFAA concentrations in Arctic fjords are

higher than in other locations. The deep and narrow structure

of fjords can restrict water circulation, leading to slower mixing

and flushing, which causes PFAAs to accumulate in the fjord wa-

ters for extended periods. Similarly, PFAA levels in high-latitude

Arctic fjord sediments are higher than in lower latitudes.20 The

unique geomorphology of Arctic fjords, characterized by deep

valleys and significant sediment deposits, allows for more effec-

tive trapping and accumulation of PFAAs. Importantly, many of

these fjords also sustain vital fisheries.52 Therefore, the Arctic

fjords should be of high concern in the Arctic regions.

In the SCAG region, high-level PFAA areas are predominantly

located south of 33◦ N latitude (Figure 4B). The Khumbu and

Rongbuk glaciers have the largest PFAA risk buffer zones, fol-

lowed by the Yulong Baishui No. 1 glacier (Figure 4B). These

glaciers are located in the monsoon-affected southern Tibetan

Plateau (south of 33◦ N), where glacier melt rates are higher

compared to the north.53 Proglacial river sediments have been

proven to be substantial sinks for PFAAs released by glacial

Figure 5. Future release potential of per-

fluoroalkyl acids from glaciers in eight

glacial regions in 2020–2100 under three

climate-change scenarios

Annual future release potential (kg year− 1) of per-

fluoroalkyl acids (PFAAs) from glaciers in eight

glacial regions via (A) the dissolved phase and

(B) suspended particles in 2020–2100 under three

climate-change scenarios (SSP126, SSP245, and

SSP585), and the release potential (kg year− 1) of

PFAAs via suspended particles from glaciers in

(C) the Greenland ice sheet (GIS) and (D) South

and Central Asia (SCAG). The release potential

refers to a predicted possibility of PFAA fluxes

under future climate scenarios. The solid line in

(A) and (B) presents the average value with a

window of 1 year, and the shaded area indicates

the range of minimum and maximum values. The

line in the boxes of (C) and (D) is the median line,

the edges of the boxes are the 5th and 95th

percentile, and the whisker is the range within the

minimum and maximum values. The difference in

the time scales on the horizontal axis in part

(C) and (D) compared with (A) and (B) is due to the

assumption that the release of glacier meltwater

sediment doubles every 30 years.33
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meltwater,18 acting as important sources for the benthic food

web. The export of PFAAs by meltwater and suspended particles

has led to PFAAs being enriched in cold-water fish species in

the Tibetan rivers (south of SCAG).54 Consequently, particular

attention should be given to headwater regions at glacier termini

and adjacent catchments, as they are likely hotspots for PFAA

contamination.

Adverse effects of increased PFAA outflows

With ongoing glacial retreat, the particle-bound fraction of

PFAAs, especially bioaccumulative long-chain compounds, is

expected to increase substantially. Our estimates suggest that

fluvial suspended particles currently deliver 238 ± 63 kg year− 1

of long-chain PFAAs globally (Table S6), a figure likely to grow

as glacier erosion and sediment fluxes intensify under warming

conditions.33,55,56 For example, projections for Greenland indi-

cate that sediment transport could double every 30 years,33

leading to a 20- to 60-fold increase in particle-bound Σ13PFAAs

releases by 2100 under different SSP scenarios (Figure 5C). This

sediment enrichment may eventually surpass meltwater as the

dominant pathway of PFAA outflows, posing increasing risks to

proglacial ecosystems.

Sediments serve as an important pathway for the entry of

PFAAs into the food web (i.e., sediment-phytoplankton-

zooplankton-Arctic char-seals-polar bears).22–24 Bioaccumulation

factors for long-chain PFAAs are approximately 30- to 50-fold

from sediment to Arctic char,23 10- to 30-fold from char to ringed

seals,57 and up to 10-fold from seal to polar bear.58 Under the

worst-case warming scenario (SSP585), PFAA concentrations in

polar bear liver tissues could rise from current levels of several

μg g− 1 to potentially mg g− 1 concentrations (Figure S4). Although

no official safe thresholds have been established for PFAAs in

polar bears, such extremely high concentrations would exacer-

bate their health risks.

Polar bears are already listed on the International Union for

Conservation of Nature Red List.59 Rising PFAA concentrations

under future warming scenarios could accelerate the decline of

this keystone species, disrupt Arctic ecosystems, and contribute

to broader biodiversity loss. Although the Arctic Monitoring and

Assessment Program has already warned of increasing PFAA-

related toxicity in polar organisms,60 our work provides a quan-

titative amplification of this trend, specifically in the increased

concentrations found in the livers of polar bears (Figure S4).

This is critical for understanding and mitigating the environ-

mental impact of PFAAs released from glacial sources.

Compared to the Arctic, the Tibetan Plateau (southern SCAG)

presents a lower risk profile. The aquatic food chain in the plateau

is generally shorter than that of the Arctic marine ecosystem,

which limits the biomagnification of PFAAs.54 However, glaciers

on the Tibetan Plateau serve as the headwaters of major Asian

rivers that support the livelihoods of over 2 billion people down-

stream.53 Under future warming scenarios, accelerated glacial

melt and enhanced sediment transport may increase the release

of particle-bound PFAAs into these headwater systems. This

could pose adverse impacts on ice-dwelling headwater species

at the base of the food web, such as algae, copepods, and amphi-

pods.61 Such upstream ecological disturbances may cascade

downstream, threatening water quality and aquatic biodiversity

in major Asian rivers.

Controlling future PFAA releases from glaciers

To mitigate adverse impacts of future PFAA releases from gla-

ciers, coordinated and immediate global actions are essential.

Reducing greenhouse gas emissions remains the most critical

step, as slowing the rate of climate warming directly reduces

glacial melt rates and the remobilization of legacy PFAAs stored

in ice. Lower emissions will not only stabilize climatic systems

but also protect ecosystems from accelerated degradation due

to rising temperatures.

In parallel, stronger global regulations on PFAS production

and use are urgently needed. Current policies have largely tar-

geted long-chain PFAAs and their precursors, but short-chain

and emerging PFASs—many of which are poorly regulated or

still unknown—are now dominant in the environment. Expanding

regulatory frameworks to include these compounds is essential

for protecting sensitive ecosystems, particularly polar and alpine

regions where bioaccumulation risks remain high.

Policy oversight must also account for unintended conse-

quences. For instance, the global transition from chlorofluoro-

carbons to short-lived substitutes under the Montreal Protocol

has inadvertently accelerated atmospheric deposition of ultra-

short-chain PFAAs, such as trifluoroacetic acid.48,62 These

substitutes, while beneficial for ozone protection, now contribute

both to climate forcing and chemical contamination.63 This un-

derscores the need for integrated environmental governance,

where solutions to one crisis do not amplify another.

As shown in Figures 5A and 5B, the world faces a narrow win-

dow of approximately 15 years to effectively curb glacier-derived

PFAA release. A combined strategy of emissions reduction,

PFAS regulation, and careful chemical substitution is essential.

Without coordinated intervention, PFAA discharges from

glaciers are projected to rise sharply, with long-term conse-

quences for freshwater security, fisheries, biodiversity, and

global pollutant burdens.

Finally, establishing long-term environmental and wildlife

monitoring programs is crucial. These systems serve as early-

warning networks, enabling the detection of rising PFAA levels

and other ecological stress signals in fragile regions. Proactive

monitoring not only informs risk assessment and response but

also supports evidence-based policy decisions aimed at

preventing irreversible ecological damage to the most fragile

cryosphere on our planet.

METHODS

Study area and field sampling

Seven glaciers on the Tibetan Plateau (affiliated to part of SCAG)

were investigated in the field, including the Rongbuk (RB), Qian-

gyong (QY), and Rijie Cojia (RC) glaciers in the Himalayan Moun-

tains, the Korchung Gangri (KG) and Zhadang (ZD) glaciers in the

Gangdise–Nyainqêntanglha Mountains, and the Galongla (GL)

and Parlung No. 4 (PL) glaciers in the Hengduan Mountains

(Figure 1). Among them, RB, ZD, KG, QY, and RC are continental

valley glaciers, whereas the GL and PL are typical temperate

glaciers. Details of these glacial regions, among which there

are significant geographical, hydrological, and meteorological

differences, are summarized in Table S10.

Meltwater sampling was conducted from July to August 2020,

corresponding to the peak melting season. At each glacier,
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surface runoff samples (0–30 cm) were collected at three sites

from the upstream to the downstream (Figure 1A). Approximately

20 L of water was collected at each site using pre-cleaned poly-

propylene bottles. Prior to use, all sampling bottles were rinsed

three times with methanol and Milli-Q water. To minimize

contamination, sampling materials containing fluoropolymer

coatings or PFAS-related components were strictly avoided. In

situ measurements of basic water quality parameters, including

water temperature (Tw), pH, conductivity (σ), and dissolved oxy-

gen (DO), were conducted during the sampling at the same site.

Analysis of PFAAs

Glacial runoff samples from seven glacial catchments on the Ti-

betan Plateau were analyzed for 13 target PFAAs. Upon analysis,

all water samples were filtered through Whatman 0.7-μm glass

fiber filters (GFFs) to separate suspended particles. The filtrates

(2 L each) were subjected to solid-phase extraction (SPE) using

Waters Oasis WAX cartridges (150 mg, 6 cm3, 30 μm), while the

retained GFFs were extracted by ultrasonic agitation using meth-

anol to measure particle-bound PFAAs. Detailed extraction pro-

cedures are described in Notes S2 and S3.

Quantification of 13 PFAAs and internal standards (Table S11)

were performed using high-performance liquid chromatography

coupled with tandem mass spectrometry (HPLC-MS/MS;

Thermo Fisher UltiMate 3000 and TSQ Quantiva triple quadru-

pole system), as described in Note S4. POC on the GFFs (the

suspended particle samples) was measured using a Shimadzu

5000-A total organic carbon analyzer to support subsequent

partitioning analysis.

All analytical procedures were conducted under strict quality

assurance and quality control measures (Note S5). Field and

procedural blanks prepared with Milli-Q water yielded concen-

trations below the method quantification limits (Table S12), con-

firming that sample contamination was negligible. Matrix spiked

recoveries, obtained by spiking with 2,000 pg of internal stan-

dards, ranged from 52% to 81% for water samples and 42%–

70% for suspended particle samples, with detailed values listed

in Table S13.

Identification of glacial regions and data compilation

The identification of glacial regions was undertaken using

version 6.0 of the Randolph Glacier Inventory (http://www.

glims.org/RGI/). Eight major glacial regions were included in

this study (Figure 2): (1), WCUG, (2) ACG, (3) GIS, (4) AEG, (5)

NAG, (6) CEG, (7) SCAG, and (8) AIS.

To construct a global dataset of PFAA concentrations, we

compiled published data for 13 PFAAs from 680 samples across

49 glaciers in these eight glacial regions (Figure 2). The dataset

includes samples from glacial runoff, snow/ice, and seawater

neighboring the glaciers. In addition, we combined our field mea-

surements (n = 59) from seven glaciers on the Tibetan Plateau

with the above published data to produce a global dataset (n =

739, Table S2). This integrated dataset offers the basis for the

global-scale assessment of PFAA fluxes from glaciers.

Drivers of particle-water partition coefficient

The Kd is defined as the ratio of a chemical’s concentration in the

particle-bound phase (Cp) to that in the dissolved phase (Cw) (i.e.,

Kd = Cp/Cw). The logKd data obtained from measurements of 13

PFAA concentrations in runoff water and suspended particles

from the Tibetan glaciers is presented in Table S4. While Kd

values are variable, they often respond to environmental factors

and chemical properties of PFAAs.

To explore the key drivers of PFAA partitioning, we analyzed

the relationships between logKd and several environmental pa-

rameters, including pH, Tw, POC, σ, and DO, as well as molecular

descriptors such as perfluorinated chain length and functional

group type (i.e., carboxylates for PFCAs and sulfonates for

PFSAs). Statistically significant correlations were observed be-

tween logKd and both POC and Tw (p < 0.05), while no significant

correlations were found for pH, DO, or σ (Table S14). These find-

ings are consistent with previous studies highlighting the impor-

tance of organic carbon and water temperature in governing

PFAS partitioning.64

In addition, we examined the influence of molecular hydropho-

bicity using theoretical ionic octanol-water partition coefficients

(logKow-ionic), as reported by Hidalgo and Mora-Diez.65 Given

that glacial meltwaters are commonly alkaline66 and PFAAs

possess low pKa values (typically <1.0), these compounds are

expected to be fully dissociated to their anionic forms.67 The log-

Kow-ionic values, which vary by carbon-chain length but are fixed

for each compound, were significantly correlated with logKd

(p < 0.01, Figure S5), which suggests that logKow-ionic can be a

useful model predictor of logKd, especially if combined with

the aforementioned POC and Tw.

To support model development, we compiled a comprehen-

sive dataset (n = 771), containing logKd, Tw, POC, logKow-ionic,

and PFAA type. These data were sourced from both glacial re-

gions (n = 191) and non-glacial environments (e.g., inland water-

sheds and coastal areas; n = 580). All values were either directly

measured or extracted from the previous literature, as listed in

Table S4. Notably, Tw values were all below 19◦C to represent

relatively low-temperature environments, with data-screening

criteria detailed in Note S1.

Prediction of Kd with ML models

Traditional curve-fitting methods showed limited performance

in predicting logKd. To overcome this limitation, we developed

ML models to estimate logKd, including SVMs, DTs, RFs, and

XGBoost.

All ML models were implemented in Python v.3.9.7 using the

scikit-learn module. Model performance was evaluated using

multiple metrics: the coefficient of determination for the training

set (R2), the predictive Q2 for the test set, and the mean absolute

error (MAE) and mean squared error (MSE) for both sets. To

ensure robustness and reproducibility, the dataset was

randomly divided into training and test sets using sklearn.mod-

el_selection.train_test_split, with varying split ratios ranging

from 5:95 to 50:50 and ten replicates for each ratio.

Among all models, XGBoost-ML (denoted as Xgb_A) exhibited

the best overall performance, achieving the highest R2 (0.95 ±

0.01) and Q2 (0.85 ± 0.04), along with the lowest MAE and MSE

for both the training set (0.138 ± 0.016 and 0.034 ± 0.008, respec-

tively) and test set (0.241 ± 0.032 and 0.105 ± 0.030, respectively).

Additionally, statistical analyses using Student’s t tests showed no

significant variation in predictive accuracy when increasing the

proportion of the test set from 5% to 45% of the total dataset
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(raw significance level α = 0.05, Bonferroni-corrected significance

level α = 0.0011, number of tests = 45).

Based on these results, the XGBoost-ML (Xgb_A) was

selected as the best-performing model for predicting logKd.

Further details regarding ML model development and compara-

tive performance are provided in Note S1.

Glacial mass balance model

Glacial runoff was calculated using a water balance approach

adapted from Bliss et al.31 Within each glacial region, there are

several subregions characterized by different meteorological

and geological characteristics. In addition, there are several

different landforms in each subregion, which might influence

the melting rate of snow or ice, i.e., the degree-day factor for

snow/ice. Therefore, the estimation for the monthly glacier runoff

needs to account for variations among different subregions and

landforms. The monthly average glacier runoff of each glacial re-

gion (Q) was calculated using

Q =
∑n

i = 1

Si ×
(
ai + Pliq;i − Ri

)
(Equation 1)

where Si (km2) is the effective area of the glacial region, which is

computed by the annual average area of subregion i, included by

the glacial region. ai is the snow/ice melt of each month, Pliq,i

(mm) is the net accumulated liquid precipitation of each month,

and Ri (%) is the potential of refreezing during melting of

each month.

It was assumed that melting had a linear correlation with the

monthly air temperature, ai, if >0◦C, and thus ai was calcu-

lated using

ai = fsnow=ice ×

∫

max (Ti; 0)dt (Equation 2)

where fsnow/ice, the degree-day factor for snow/ice ([mm water

equivalent] day− 1 ◦C− 1), is a constant that depends on the sam-

ple types, and Ti, the monthly air temperature (◦C) above the

glacier surface, is a random variable, which was computed using

Ti = Tannual average +
(
Tsummer − Tannual average

)

× sin

(

(i − 4)×
2π
12

)

+ δTi (Equation 3)

where the Tannual average and Tsummer were provided from previous

studies.31 δTi is a random variable following normal distributions,

with a mean value of 0◦C. When i referred to winter (December to

February) or summer (June to August) time, δTi was the standard

deviation of summer temperatures. Vice versa, when i referred to

Spring (March to May) or Autumn (September to November) time,

δTi was the standard deviation of annual average temperatures.

Fluxes contributed by liquid precipitations, Pliq;i, were calcu-

lated using

Pliq;i = Pi × θ(Ti ;0) (Equation 4)

where Pi is a random parameter following a normal distribution,

with its mean value and standard deviation cited from previous

publications,66 and θ(Ti ;0) is a Heaviside function, which equals

1 when Ti is greater than 0 and equals 0 when Ti is less than or

equal to 0.

Ri was estimated according to the linear relationship between

Ri and air temperature (Ti) at different elevations, assuming that

the snow meltwater frozen on the surface of the glacier (Ri)

does not flow away. The estimation was conducted using

Ri = − 0:69× Ti + 0:0096 (Equation 5)

For each of eight glacial regions, 2,500 Monte Carlo simula-

tions were conducted (Note S6). For each simulation, glacier

runoff fluxes in 12 months were computed using the method

stated above and then summed over to obtain the annual glacier

runoff fluxes. One glacial region may be composed of several

glaciers, while each of them might have a different composition

of landforms: three types of landforms, namely the sample types,

were considered, having different degree-day factors: fsnow/ice =

1 for ‘‘glacier runoff,’’ fsnow/ice = 2 for ‘‘snow/ice,’’ and fsnow/ice = 4

for ‘‘seawater neighboring the glaciers.’’ Each sample type was

chosen randomly for the simulation of the whole year,

without bias.

Released flux estimation of PFAAs, dissolved part

The annual fluxes of 13 PFAAs in the dissolved phase were

estimated for eight glacial regions using Monte Carlo simulations

(Note S6). For each region and each PFAA, 2,500 simulations

were conducted. Because a glacial region can consist of multiple

subregions of varying sizes, the number of simulations allocated

to each subregion is determined based on the respective area

sizes within the larger region. For each simulation, the PFAA con-

centrations discharged in a subregion (Cw) were those of a sam-

ple randomly chosen from one of three sample types (ice/snow,

glacier runoff, and seawater) (Table S2), with equal probability.

The glacial meltwater fluxes of the subregion from each sam-

ple type in each month were determined in the aforementioned

glacial mass balance model, and the PFAA fluxes in dissolved

phase of that month were the concentration of PFAAs times

the corresponding runoff volume. Annual fluxes for each region

were derived by summing monthly fluxes across all subregions.

Released flux estimation of PFAAs, suspended

particle part

The annual fluxes of 13 PFAAs partitioned on suspended parti-

cles of the eight glacial regions were also estimated using Monte

Carlo simulations (Note S6). Based on the predictions for logKd

by the XGBoost-ML and the reported mean PFAA concentra-

tions in water of each glacial region, we obtained the concentra-

tion of PFAAs on suspended particles (Cp) (Table S5). The annual

particulate PFAA fluxes from different glacial regions were then

estimated by multiplying the mean Cp by the regional average

glacial runoff and the mean suspended particle concentration

(Table 1). The final flux estimates for all regions are presented

in Table S6.

Future release potential of PFAAs

The projected future release fluxes of 13 PFAAs in both dissolved

and particle-bound phases were estimated with the support of

SSPs, which provided estimates of air temperature and precipi-

tation from 2020 to 2100 (Figures S6 and S7). The modeling

assumed there would be sufficiently large amounts of historical

storage of PFAAs in glaciers.
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Three SSP scenarios, namely SSP126, SSP245, and

SSP585,68,69 were utilized to represent low, intermediate, and

high global warming scenarios, respectively. For each scenario,

the annual and summer average air temperatures in each subre-

gion were calibrated using the 2020 values as a baseline. This

ensured that the projected temperature increases under different

SSPs, relative to 2020, were maintained. Similarly, monthly

precipitation values for each region were calculated based on

the recorded data from 2020, such that changes in annual

precipitation projected by the SSPs were consistently applied

while preserving the seasonal distribution. Detailed calibration

procedures are provided in Note S6.

The potential release fluxes of 13 PFAAs, both in the dissolved

phase and on suspended particles, were estimated annually

from 2020 to 2100 under the three climate warming scenarios

(Figures 5A and 5B). For each year, 2,500 Monte Carlo simula-

tions were conducted to account for variability and uncertainty.

The modeling approach for 2021–2100 followed the same frame-

work used for the baseline year 2020, ensuring methodological

consistency across the entire simulation period.

Deposition and budget estimates of Σ10PFCAs

Atmospheric deposition is the primary input pathway of PFAAs

to glacier surfaces. As the GEOS-Chem model does not simulate

PFSAs,27 our analysis focuses on ten PFCAs with carbon-chain

lengths from C4 to C13 (Σ10PFCAs). Using the atmospheric

depositional fluxes of Σ10PFCAs generated by the GEOS-

Chem model27 along with glacier surface area data (Table 1),

we estimated the deposition fluxes (input) of Σ10PFCAs to global

glaciers. By comparing this input with the predicted release

fluxes (output) of Σ10PFCAs, we evaluated the input-output

budget of Σ10PFCAs across the eight different glacial regions

(Table 1).

The GEOS-Chem model (version 12.2) is a widely used,

community-developed atmospheric chemistry model that

incorporates reanalysis meteorological data to simulate the

transport and deposition of pollutants. Σ10PFCAs were

included in the GEOS-Chem model with a detailed set of chem-

ical reactions, emission inventories, prescribed meteorology,

and wet and dry deposition schemes.27 The model was then

run at a horizontal resolution of 4◦ × 5◦, with 46 vertical levels,

using assimilated GEOS-FP meteorology data. This produced

the modeled spatial distribution of the annual deposition of

Σ10PFCAs in 2013–2015 resulting from the inventory of degra-

dation of precursor molecules and direct global emissions.

Due to the observed long-term stability of atmospheric PFAA

concentrations, e.g., perfluorooctane sulfonic acid, in polar

regions over recent decades (Note S7),12,70 we assumed

the annual deposition fluxes of Σ10PFCAs from 2013 to 2020

are the same.

The GEOS-Chem estimation contains a few uncertainties.

These include incomplete emission inventories of short-chain

PFAA replacements71,72 and precursors,17,51 unquantified

contribution of sources such as sea-spray aerosols,73,74 and

limited understanding of atmospheric transformation mecha-

nism.75 Despite these limitations, the GEOS-Chem model offers

a valuable basis for estimating large-scale deposition patterns of

PFAAs to compare their input-output budget in remote glacial

environments.
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Supplemental Notes 

Note S1. Partition coefficient (Kd) estimation by curve-fitting approaches and machine learning 

algorithms. 

To predict the partition coefficient (Kd) of perfluoroalkyl acids (PFAAs) between water and 

suspended particles, curve-fitting approaches and machine learning (ML) algorithms were 

employed. The dataset used to train these models was compiled from newly measured data and 

previously published studies. This dataset comprised measured logKd along with corresponding 

environmental parameters [water temperature (Tw), particulate organic carbon (POC), region 

types], and chemical properties [logKow-ionic, PFAA acid type (i.e., carboxylic and sulfonic 

acids)]. 

Given the diverse global water temperatures and the relatively low temperatures in glacial 

regions, it was essential to select data within a temperature range that closely reflects real-world 

conditions for the model. According to official estimates, sea surface temperatures in the Arctic 

Ocean could reach up to 18.6℃ under the SSP585 scenario for 2071-2100 (see https://climate-

adapt.eea.europa.eu/en/metadata/indicators/sea-surface-temperature-1). Therefore, data from 

previous studies reporting water temperatures above 19℃ were excluded during data filtering. 

The final dataset consisted of previously published data (n=631) and the newly measured values 

from this study (n=140), categorized into three region types: glacial regions, inland watersheds, 

and coastal areas. Detailed data is listed in Table S4. 

To evaluate and compare the model performance, three key metrics are employed: 1) R2 score 

(R2), which quantifies the proportion of variance in the target variable explained by the model; 

2) Mean Squared Error (MSE), which measures the average squared difference between 

predicted and actual values (lower values indicate better performance); and 3) Mean absolute 

errors (MAE), which measures the average of the absolute differences and are used as 

performance for parameters tuning in the training and test sets. All models were implemented 

in Python 3.9.7 environment. 

The step-by-step methodological workflow for tuning each model, including three curve-fitting 

approaches and four ML algorithms - support vector machine (SVM), decision tree (DT), 

https://climate-adapt.eea.europa.eu/en/metadata/indicators/sea-surface-temperature-1
https://climate-adapt.eea.europa.eu/en/metadata/indicators/sea-surface-temperature-1
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random forest (RF), and XGBoost - are detailed below: 

(1) Curve-Fitting Approach 

To model the relationship between logKd and the other parameters in the dataset (Table S4), 

linear and polynomial functions were applied to the entire dataset. The curve_fit function from 

scipy.stats.optimize was employed, and the three equations (Eq.1, 2 ,3) used were as follows. 

In each equation, a, b, c, and d represent the fitting coefficients. 

 

⚫ Linear function 

log 𝐾d = a × Tw + b × log 𝐾ow−ionic + c × log POC +d  (Eq. 1) 

Reason for use: Equation 1 represents a basic independent linear relationship between the 

feature variables (Tw, logKow-ionic, and logPOC) and logKd. A linear model is often the first 

choice as it provides a simple and interpretable way to understand the relationship between 

variables. It assumes that each feature variable has a constant and independent effect on the 

response variable logKd. This simplicity allows for a quick assessment of the direct influence 

of each variable on logKd. 

 

⚫ Polynomial function 

log 𝐾d = a × Tw + (b1 × log3 𝐾ow−ionic + b2 × log2 𝐾ow−ionic + b3 × log 𝐾ow−ionic) + c ×

log POC +d  (Eq. 2) 

Reason for use: Previous analysis indicated that there may or may not be a linear correlation 

between logKd and logKow-ionic.
1 To account for potential non-linearity in the relationship 

between logKd and logKow-ionic, Equation 2 was considered. By including higher-order terms of 

logKow-ionic (cubic, quadratic, and linear), the model can capture more complex relationships 

that a simple linear model might miss. This allows for a more flexible fit to the data when the 

relationship between these two variables is not strictly linear.  

 



3 

log 𝐾d = (a1 × Tw
3 + a2 × Tw

2 + a3 × Tw) + (b1 × log3 𝐾ow−ionic + b2 × log2 𝐾ow−ionic +

b3 × log 𝐾ow−ionic) + c × log POC +d  (Eq. 3) 

Reason for use: When the water temperature (Tw) approaches 0, a phenomenon known as brine 

rejection occurs.2 This suggests that the overall trend between logKd and Tw might not be linear 

but monotonically increasing, in that, a cubic function would probe if there might be a saddle-

like distort. Equation 3 takes this into account by including higher-order terms of Tw (cubic, 

quadratic, and linear) in addition to the higher-order terms of logKow-ionic. This allows the model 

to better capture the complex behavior of logKd as Tw changes, especially near the critical 

temperature of 0. 

 

Overall, curve-fitting approaches performed poorly on the entire dataset in all cases. Although 

increasing the model complexity (from Eq. 1 to Eq. 2 and then to Eq. 3) partially improved the 

explained variance, with R² values of 0.483, 0.594, and 0.636, respectively, the MAE values 

remained high (0.553, 0.524, and 0.521). This high MAE indicates that the parameters 

contribute to the logKd interdependently and cannot be well-explained by linear or polynomial 

functions with independent terms. As a result, machine learning (ML) algorithms were applied 

to achieve better logKd predictions. 

 

(2) Machine Learning Algorithms 

⚫ Support Vector Machine (SVM) model 

Model construction and hyperparameter tuning. The SVM model was constructed using the 

sklearn.svm.SVR module from the Scikit-learn library. To fine-tune its hyperparameters, the 

GridSearchCV algorithm with a 5-fold cross validation strategy was employed. The 

hyperparameters under optimization were ‘C’, ‘degree’, ‘gamma’ and ‘tol’. The detailed list of 

candidate values for these hyperparameters is provided in Text S1-Table 1.  
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Note S1-Table 1. Candidate parameter values for gird search in Support Vector Machine 

hyperparameter tuning. 

Hyperparameters Values 

C 0.001, 0.01, 0.03, 0.1, 0.3 

degree 2, 3, 4, 5 

gamma 0.001, 0.01, 0.03, 0.1, 0.3 

tol 0.001, 0.01, 0.03, 0.1, 0.3 

Note: This table lists the potential tuning values for the hyperparameters ‘C’, ‘degree’, ‘gamma’, and ‘tol’ 

used in the grid search process to optimize the SVM model. These values serve as the search space for 

identifying the optimal configuration. 

Model performance evaluation and parameter selection. To evaluate the model performance, 

the MAE and its standard deviation across the five cross-validations folds were plotted. The 

results showed a clear trend: models with a lower standard deviation generally had a lower 

MAE. This relationship implies that greater model stability is often associated with higher 

predictive accuracy. To balance predictive accuracy and model stability, the grid parameter 

configuration corresponding to the 5th lowest MAE and the 4th lowest standard deviation was 

selected as the best-fitting setup. The visual representation of this selection process can be seen 

in Note S1-Figure 1, green dot. 

Final optimized model. The final optimized parameters were determined as ‘C’=0.03, 

‘degree’=4, ‘gamma’=0.3, and ‘tol’=0.03. When applied to the test set, the optimized model 

achieved an MAE of 0.3783, demonstrating relatively good predictive performance (Note S1-

Figure 1, green dot with red edge). 

 

⚫ Decision Tree (DT) model 

Model construction and hyperparameter tuning. The DT model was implemented using 

sklearn.tree.DecisionTreeRegressor from the Scikit-learn library. Hyperparameter optimization 

was conducted via GridSearchCV with a 5-fold cross-validation strategy. The tuning process 

involved four hyperparameters: ‘max_depth’, ‘min_samples_split’, ‘min_samples_leaf’, and 

‘min_weight_fraction_leaf’. A total of 1,350 parameter grids (derived from the Cartesian 

product of candidate values) were tested. The hyperparameters search space is detailed in Note 



5 

S1-Table 2. 

Note S1-Table 2. Candidate parameter values for gird search in Decision Tree hyperparameter 

tuning. 

Hyperparameters Values 

max_depth 4, 5, 6, 7, 8, 9, 10, 11, 12 

min_samples_split 2, 3, 4, 5, 6 

min_samples_leaf 1, 2, 3 

min_weight_fraction_leaf 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 

Note: This table lists the candidate values for hyperparameters optimized via grid search in the Decision Tree 

(DT) model. The search space comprises 9 (‘max_depth’) × 5 (‘min_samples_split’) × 3 (‘min_samples_leaf’) 

× 10 (‘min_weight_fraction_leaf’) = 1,350 unique parameter combinations. 

Model performance evaluation and parameter selection. Model performance was evaluated 

by plotting the MAE and its standard deviation across cross-validations folds. Top-performing 

models showed tightly clustered MAE scores but exhibited stability variations (standard 

deviation: 0.010-0.037). To balance predictive accuracy and stability, the grid configuration 

corresponding to the 98th lowest MAE (to avoid overfitting to the validation data) and the 1st 

lowest standard deviation (maximum stability) were selected as optimal (see Note S1-Figure 1, 

salmon red dots). 

Final optimized model. The final optimized DT model parameters are ‘max_depth’=7, 

‘min_samples_leaf’=1, ‘min_samples_split’=5, ‘min_weight_fraction_leaf’=0. This 

configuration achieved an MAE of 0.2980 on the test set (Note S1-Figure 1, salmon red dots 

with red edge). 

 

⚫ Random Forest (RF) model 

Model construction and hyperparameter tuning. The RF model was constructed using the 

sklearn.ensemble.RandomForestRegressor from the Scikit-learn library. Hyperparameter 

optimization was carried out via GridSearchCV algorithm with a 5-fold cross-validation 

strategy. The hyperparameters under optimization were ‘max_depth’, ‘min_samples_split’, 

‘min_samples_leaf’, and ‘n_estimators’. The candidate values for these hyperparameters are 

presented Note S1-Table 3. Additionally, the parameter, ‘boost_trap’ was set for all the tested 
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grids (Note S1-Figure 1, steel blue dots). In total, 810 parameter grids were tested. 

 

Note S1-Table 3. Candidate parameter values for gird search in Random Forest hyperparameter 

tuning. 

Hyperparameters Values 

max_depth 4, 5, 6, 7, 8, 9, 10, 11, 12 

min_samples_split 2, 3, 4, 5, 6 

min_samples_leaf 1, 2, 3 

n_estimators 50, 60, 70, 80, 90, 100 

Note: This table lists the candidate values for the hyperparameters used in the grid search to tune the Random 

Forest model. The combination of these values forms the 810 parameter grids that were tested. 

Model performance evaluation and parameter selection. To evaluate the model’s 

performance, the MAE and their standard deviation across the five cross-validation folds were 

plotted. A clear trend was observed: smaller standard deviations were associated with lower 

MAE values. The best-performing grid points were closely clustered, yet there was significant 

variance in their stability. For MAE values less than 0.2564, the standard deviation ranged from 

0.0104 to 0.0182 for MAE<0.2564. To balance predictive accuracy and model stability, the grid 

point corresponding to the 118th lowest MAE and 1st lowest standard deviation was selected as 

the optimal configuration. 

Final optimized model. The final optimized parameters for the RF model are as follows: 

‘max_depth’=12, ‘min_samples_leaf’=1, ‘min_samples_split’=6, ‘n_estimators’=90. When 

applied to the test set, this optimized model achieved an MAE of 0.2555 (Note S1-Figure 1, 

steel blue dots with red edge). 

 

⚫ Extreme Gradient Boost (XGBoost) 

Two-Step Hyperparameter Tuning Strategy. The XGBoost model was optimized using a 

hybrid approach: initial tuning with the scikit-learn API (for rapid parameter screening) 

followed by fine-tuning with the Learning API (for advanced parameter control). This strategy 

addressed the trade-off between computational efficiency (scikit-learn API) and comprehensive 
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parameter optimization (Learning API). 

Step 1: Initial Tuning with scikit-learn API 

Model construction and hyperparameter tuning. Hyperparameters were tuned using 

GridSearchCV with 5-fold cross-validation. The search space included ‘max_depth’, ‘eta’, 

‘gamma’, ‘subsample’, ‘lambda’ and ‘alpha’. The parameter ‘n_estimators’ was fixed at 100 for 

all test grids. The specific candidate values for those parameters in grid search are listed in Note 

S1-Table 4. In total, 10,080 parameter grids were tested, as shown in Note S1-Figure 1, gold 

dots. 

Note S1-Table 4. Candidate parameter values for gird search in XGBoost tuning (scikit-learn 

API). 

Hyperparameters Values 

max_depth 5, 6, 7, 8, 9, 10 

eta 0.1, 0.13, 0.16, 0.19 

gamma 0.01, 0.02, 0.03 

subsample 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 

lambda 0, 0.1, 0.2, 0.3, 0.4 

alpha 0, 0.01, 0.03, 1 

n_estimators 100 

Note: This table lists the candidate values for the hyperparameters used in the grid search to tune the Extreme 

Gradient Boost model. The combination of these values forms the 10,080 parameter grids that were tested. 

Model performance evaluation and parameter selection. To evaluate the model performance, 

the MAE and its standard deviation across the five cross-validations were analyzed. The best-

performing grids (MAE<0.2564) were closely clustered, but there was significant variation in 

their stability. The standard deviation of MAE for these grids ranged from 0.0051 to 0.0328 

when MAE<0.2564. 

Two specific grid points were selected for further tuning: 1) XGB_A, this grid corresponded to 

the 1st lowest MAE and the 2757th lowest standard (Note S1-Figure 1, gold dots with red edge). 

The parameter grid for XGB_A in the scikit-learn API was ‘alpha’=0.03, ‘eta’=0.1, 

‘gamma’=0.03, ‘lambda’=0.3, ‘max_depth’=7, ‘subsample’=0.7, achieving an average MAE 

of 0.2346 and an MAE standard deviation of 0.0166; 2) XGB_B, this grid corresponded to the 

572nd lowest MAE, 220th lowest standard deviation (Note S1-Figure 1, gold dots with red edge). 
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The parameter grid for XGB_B in the scikit-learn API was ‘alpha’=0.03, ‘eta’=0.1, 

‘gamma’=0.02, ‘lambda’=0.4, ‘max_depth’=7, ‘subsample’=0.7, achieving an average MAE 

of 0.2399 and an MAE standard deviation of 0.0122. 

 

Step 2: Fine-Tuning with Learning API 

Model construction and hyperparameter tuning. In the Learning API, the parameters 

‘colsample_bynode’, ‘learning_rate’, and ‘min_child_weight’ were turned through grid 

searching. The paramters ‘reg_lambda’, ‘reg_alpha’, ‘subsample’, ‘num_parallel_tree’, 

‘max_depth’, and ‘gamma’, were fixed based on the two grid points selected in the scikit-learn 

API. The specific candidate values for the tunable parameters are listed in Note S1-Table 5. 



9 

Note S1-Table 5. Candidate parameter values for gird search in XGBoost tuning (Learning 

API). 

Parameter 
Values 

XGB_A XGB_B 

colsample_bynode 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 

learning_rate 0.003, 0.1, 0.3, 0.6, 1 

min_child_weight 1, 6, 11, 16, 21, 26 

num_boost_round 1000 

early_stopping_rounds 3 

reg_alpha 0.03 

subsample 0.7 

num_parallel_tree 100 

max_depth 7 

reg_lambda 0.3 0.4 

gamma 0.03 0.02 

For each gird configuration, the dataset was split using sklearn.model_selection.train_test_split, 

with 30% of the data allocated as the test set and a fixed random state to ensure reproducibility 

(training set: test set = 7:3). The MSE, MAE and R2 score were recorded for both the training 

and test sets.  

Parameter Selection and Final Performance (Note S1-Figure 2). For XGB_A, the grid 

corresponding to the 13th lowest MAE of the test set was chosen. The optimized parameters 

were ‘colsample_bynode’=0.8, ‘learning_rate’=0.1, ‘min_child_weight’=6, 

‘num_boost_round’=1000, ‘early_stopping_rounds’=3, ‘reg_alpha’=0.03, ‘subsample’=0.7, 

‘num_parallel_tree’=100, ‘max_depth’=7, ‘reg_lambda’=0.3, ‘gamma’=0.03, achieving a 

MAE of 0.2389 on the test set. For XGB_B, the grid corresponding to the 1st lowest MAE of 

the test set was selected. The optimized parameters were ‘colsample_bynode’=1, 

‘learning_rate’=0.03, ‘min_child_weight’=6, ‘num_boost_round’=1000, 

‘early_stopping_rounds’=3, ‘reg_alpha’=0.03, ‘subsample’=0.7, ‘num_parallel_tree’=100, 

‘max_depth’=7, ‘reg_lambda’=0.4, ‘gamma’=0.02, achieving a MAE of 0.2519 on the test set. 
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Note S1-Figure 1. Performance of tested machine learning methods by grid searching. 

Note: A, scattering diagram of average mean absolute errors and standard deviations at 5-fold 

cross validation. The points corresponding to top 100 SVMs, top 100 DTs, top 250 RFs, and 

top 250 XGboost (Xgb) scored (minimum mean absolute error) models were scattered, of which 

the optimized models for each set were red circled. B, Tylor diagram of top 100 SVMs, top 100 

DTs, top 250 RFs, and top 250 Xgb scored models. In terms of both mean absolute error and 

root mean squared error, Xgb models could achieve better performance than those of other 3 

structures.  

 

Note S1-Figure 2. Relationship between test set average mean absolute errors (MAE) and 

difference between test of MAE and train MAE.  

Note: Under a fixed random splitting of the dataset, both XGB_A and XGB_B were further 

tuned based on the parameter grids obtained from the scikit-learn API. The red circled point 

refers to the local minimum of the test set MAE during the tuning of XGB_A, and that of 

XGB_B. Comparing the top 100 highest-scoring parameter grids of XGB_A and XGB_B, the 
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average test set MAE of XGB_A is 0.040 lower than that average of XGB_B (p<0.0001), 

suggesting that XGB_A is more robust than XGB_B. 

 

Performance comparison of Machine Learning algorithms using Monte Carlo cross-

validation 

Optimized models —including SVM, DT, RF, and XGBoost (XGB_A and XGB_B)— were 

compared using 100-fold Monte Carlo cross-validation with test-to-train ratios ranging from 

5:95 to 50:50. Performance metrics (R2 score, MAE and MSE) across all models are 

summarized in Note S1-Figure 3, with detailed data listed in Note S1-Table 6. 

Among the models, RF and XGBoost consistently outperformed DT and SVM across all 

validation scenarios. XGBoost outperformed RF in all cases except for one validation (test-to-

train ratio=5:95), where no statistically significant difference was observed across six 

evaluation metrics (Student’ t-test, α=0.05) (Note S1-Figure 3). The stable performance of the 

RF and XGBoost model suggests that they are neither underfitted nor overfitted. 

Final model selection. When comparing the test set performance scores, XGB_A and XGB_B 

exhibited nearly identical performance (t<0.102, p>0.460 for MAE; t<0.117, p>0.453 for MSE; 

t<0.152, p>0.440 for R2). However, in terms of training set performance, XGB_B exhibited a 

closer consistency between training and test set performance compared to XGB_A (Note S1-

Table 6). Finally, the XGB_B model was selected as the final model and trained by the whole 

dataset.  

Model limitations. While the model successfully captured logKd patterns using up to 5 

parameters, a persistent performance gap between training and test sets —largely invariant to 

test size reduction—suggests unresolved noise unrelated to the selected features. Nevertheless, 

the model reduced logKd variance to 0.24, sufficient for subsequent Monte Carlo simulations. 

This residual uncertainty aligns with known measurement variability in PFAA concentrations 

for suspended particles, rather than inherent model limitations. 
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Note S1-Figure 3. Performance comparison of optimized Machine Learning algorithms across 

different metrics. 

Note: The optimized models-SVM, DT, RF, XGBoost(A&B)-were evaluated using Monte 

Carlo cross-validated in ten different training and test set ratios for 30 times each. In each sub-

diagram, scattered points represent the average value, and the vertical lines represent the ±1 

standard deviation. 
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Note S1-Table 6. Performance metrics (R2, Mean Squared Error (MSE), Mean absolute errors 

(MAE)) on the training and test sets for the optimized machine learning models. 

Model Metric R2_train R2_test MSE_train MSE_test MAE_train MAE_test 

XGB_A Average 0.949 0.854 0.037 0.104 0.146 0.242 

 SD 0.008 0.045 0.006 0.029 0.012 0.032 

XGB_B Average 0.953 0.853 0.034 0.105 0.138 0.241 

 SD 0.011 0.046 0.008 0.030 0.016 0.032 

RF Average 0.941 0.832 0.042 0.120 0.154 0.259 

 SD 0.003 0.054 0.002 0.035 0.003 0.035 

DT Average 0.897 0.754 0.074 0.176 0.202 0.305 

 SD 0.010 0.102 0.007 0.068 0.009 0.052 

SVM Average 0.723 0.596 0.199 0.287 0.319 0.366 

 SD 0.013 0.254 0.009 0.185 0.006 0.060 

Note: SD represents the standard deviation.  
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Note S2. Extraction of PFAAs from water samples. 

All the water samples, including glacial runoff, lake water and surface snow/ice (after natural 

melting), were filtered through Whatman glass fiber filters (GFF, 0.7 µm). Two liters (2L) of 

each filtered sample were spiked with 2000 pg of internal standards and then subjected to solid-

phase extraction using Waters Oasis WAX cartridges (150 mg, 6 cm3, 30 μm) as described in 

our previous study.3 After preconditioning with 5 mL of methanol and 5 mL of distilled Milli-

Q water, the solid-phase extraction cartridge was loaded with the water sample and eluted at 

about one to two drops per second. Each cartridge was then washed with 0.1% acetic acid and 

dried for 20 min under vacuum. The cartridges and filters were wrapped in Aluminum foil and 

sealed in airtight containers before storing at −20°C until elution. Before elution, each cartridge 

was air-dried for 30 min under vacuum. For this operation, an additional WAX cartridge was 

connected to the top of the sample cartridge to ensure that the air stream was free of PFAAs. 

The analytes were eluted from the WAX cartridges using 10 mL of methanol with 0.1% 

ammonium hydroxide. The extracts were then concentrated to 200 μL under a gentle nitrogen 

flow.  
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Note S3. Extraction of PFAAs from suspended particle samples. 

The PFAAs in suspended particles were extracted with methanol following a previously 

published method with minor modifications.4 In brief, the weighed and air-dried (in a natural 

state) suspended particle samples were spiked with 2000 pg of internal standards and placed 

into a 50-mL polypropylene centrifuge tube. Following the addition of 10 mL of methanol, the 

samples were shaken for 2 min to mix evenly, sonicated at 60°C for 30 mins, and then 

centrifuged at 6000 rpm for 15 min. The supernatant was then transferred to another tube. This 

process was performed in triplicate. The supernatants were combined (about 30 mL) and 

concentrated to 1−2 mL under a gentle nitrogen flow before dilution with 50 mL of Milli-Q 

water. The diluted sample was then loaded onto a preconditioned WAX cartridge and extracted 

using the same method as for the water samples.  
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Note S4. Instrumental analysis of target PFAAs in extracts. 

The instrumental analysis procedure has been reported previously.3,5 The extract (10 μL) was 

injected into an Acclaim 120 C18 column (5 μm, 100 Å, 150 mm × 4.6 mm) coupled with a 

ThermoFisher Scientific UltiMate TM 3000 dual-gradient high-performance liquid 

chromatography system and a ThermoFisher Scientific TSQ Quantiva triple quadrupole mass 

spectrometer. The mobile phases were (A) 10 mM ammonium acetate (pH 4) and (B) 

acetonitrile. The flow rate was set at 1 mL min−1. The mobile phase gradient started at 10% B, 

held constant for 1.5 min, increased to 95% by 4 min, held constant until 8 min, returned to the 

initial condition by 8.5 min, and then balanced for 1.5 min. The mass spectrometer was operated 

in the negative ion electron spray ionizer mass spectrometry/mass spectrometry multiple 

reaction monitoring mode. The mass spectrometry parameters were set as follows: sheath gas, 

40 units; auxiliary gas, 12 units; source voltage, 2500 V; vaporizer temperature, 350°C; 

capillary temperature, 400°C; and scan time, 0.01 s. Quantification was performed using the 

response factors calculated and applied to a seven-point calibration graph ranging from 0 to 20 

ppb for individual analytes. All the target analytes are listed in Table S1.  



17 

Note S5. Quality assurance and quality control. 

All the analytical procedures were monitored using strict quality assurance/control measures. 

To reduce contamination from the experimental equipment, contact with the vessel and 

fluorine-containing materials was avoided during the experimental and analytical processes. 

Field blanks and procedural blanks for water and suspended particle samples were diluted using 

Milli-Q water and clean fiber filters were used as alternative samples to monitor contamination 

during sample collection and solid-phase extraction. The analytes detected in the field blanks 

are listed in Table S12. The compounds were classified as not found when the signal-to-noise 

ratio (S/N) was <3. The method quantification limits (MQLs) were defined as the mean 

concentration of the procedural blanks plus three times the standard deviation of the blank 

response. If the chemicals were classified as not found in the blanks, then the MQLs were 

calculated with an S/N ratio of 10. The MQL ranges of all the targets are given in Table S12 

and were similar to those reported previously.6 The blank test indicated that the field sampling 

and experimental procedures did not result in contamination of the samples. Mean recoveries 

ranged from 52% to 81% and 42% to 70% for the water and suspended particle samples, 

respectively (Table S13). All the results were recovery-corrected. 
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Note S6. Monte Carlo simulation to the estimated release fluxes for PFAAs. 

To estimate the virtual PFAA release fluxes in water phase and on suspended particles in eight 

glacier regions, Monte Carlo simulations (MCS) were performed to evaluate the mean values 

of fluxes and the uncertainties. 

The MCS for PFAA release fluxes in the water phase contained 3 steps: 1) calibration of 

monthly precipitation, subregional air temperature, and effective glacier area by measured or 

documented data, 2) evaluation of monthly glacier runoff volume, and 3) computation of PFAA 

fluxes in water phase. Calibration of monthly precipitation was based on monthly precipitation 

data, the fifth generation of European Reanalysis (ERA5-Land) dataset published on the 

Climate Data Store (ERA5-Land monthly averaged data from 1950 to present (copernicus.eu)), 

including maximum, minimum, average, and standard deviation, which were assumed as the 

precipitation in 2020. The annual precipitation, as well as the corresponding standard deviations 

of annual participation from 2020 to 2100 found by SSP126, SSP245, and SSP585. The 

calibrated maximum, minimum, average, and standard deviation of each year were found by 

following equations: 

 ( ) (2020)( , ) ( ,2020)(P P ) /12SSP year SSPc m year meas mp p= − +  (5) 
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where min, ( , )c m yearp  , max, ( , )c m yearp  , ( , )c m yearp  , and ( , )c m yearp   are the calibrated monthly 

minimum, maximum, average and standard deviations of precipitation (mm) at given month 

and year, ( , )m year  , and likewise, the min, ( , )meas m yearp  , max, ( , )meas m yearp  , ( , )meas m yearp  , and 

( , )meas m yearp   are the monthly minimum, maximum, average and standard deviations of 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
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precipitation (mm) at given month and year available in the Coupled Model Intercomparison 

Project 6 (CMIP6) datasets. The ( )PSSP year  and ( )PSSP year are the annual average and standard 

deviations of precipitation found by SSP126, SSP245, or SSP585 in given year. 

The subregional average summer air temperature and the annual average air temperature were 

assumed to rise equally through 2020 to 2100, while the pinpoint for calibration were the 

summer and annual average air temperature in 2020 evaluated by ERA5-Land dataset. 

Following computation were conducted, 

 , ( , ) , ( ,2020) , ( , ) , ( ,2020)air c subregion year air meas subregion air SSP region year air SSP regionT T T T= + −  (9) 

where the airT   referred to either the summer average temperature or annual average 

temperature (℃), and the subscribe c, meas and SSP referred to calibrated results, measured 

value in ERA5-Land dataset for year 2020, and simulated results by SSP126, SSP245, or 

SSP585, respectively. The subregion is under the corresponding category of the region. The 

uncertainty of the summer average temperature and annual average temperature were kept the 

same for all 80 years. 

The effective glacier areas were calibrated based on measured annual average glacier runoff 

fluxes and the mean values of the simulated annual glacier runoff fluxes of each region. 

Effective factors for each region were computed as 

 𝑟𝑟𝑒𝑔𝑖𝑜𝑛 =
𝛷̄𝑚𝑒𝑎𝑠,𝑟𝑒𝑔𝑖𝑜𝑛

𝛷̄𝑠𝑖𝑚𝑒𝑑,𝑟𝑒𝑔𝑖𝑜𝑛
 (10) 

where 𝛷̄𝑚𝑒𝑎𝑠,𝑟𝑒𝑔𝑖𝑜𝑛  (kg year-1) were the average glacier runoff fluxes in given region, and 

𝛷̄𝑠𝑖𝑚𝑒𝑑,𝑟𝑒𝑔𝑖𝑜𝑛 was the mean value of glacier runoff fluxes in given region in 2500 Monte Carlo 

simulations which were based on the method proposed by Bliss et al., with initial value of 

𝑟𝑟𝑒𝑔𝑖𝑜𝑛 as 1. The evaluated 𝑟𝑟𝑒𝑔𝑖𝑜𝑛 are 0.7873, 2.9036, 4.2978, 0.1937, 4.1656, 3.2891, 1.0773, 

and 0.0049 for West Canada and USA, Arctic Canada, Greenland, Arctic Europe, North Asia, 

Central Europe, South and Central Asia, and Antarctic and Subantarctic ice sheet, respectively. 

The effective glacier area is the area measure in the version 6.0 of the RGI 
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(http://www.glims.org/RGI/) multiplied by the effective factor. 

The monthly glacier runoff fluxes in each subregion were evaluated by Monte Carlo simulations 

of the method proposed by Bliss et al. 2500 simulations were conducted for each year, where 

the precipitation and the air temperature were randomly elected based on the gaussian 

distribution with corresponding mean value and standard deviation of the monthly 

precipitations and air temperatures. Since the precipitation should not be less than zero, if a 

negative precipitation was elected, an alternative election would replace it. In addition, the 

snow-ice melting index, 𝑓𝑠𝑛𝑜𝑤/𝑖𝑐𝑒, was determined by the sample type. Those elected monthly 

precipitation, air temperature, and the melting index, were used in the flow work proposed by 

Bliss et al., as it has been described in the Glacier Runoff Model. 

The annual PFAA fluxes of each region in water were the sum of its monthly fluxes. For each 

subregion there were 2500 samples randomly elected to extract the representative PFAA 

concentrations. The subregion they belonged to, as well as their sample type, were recorded, 

thereby the glacier runoff fluxes could associate with PFAA concentration by subregion and 

sample types. The monthly PFAA fluxes (𝛷𝑤−𝑃𝐹𝐴𝑆(𝑚), kg year-1) were computed as follows 

 𝛷𝑤−𝑃𝐹𝐴𝑆(𝑚) = ∑ ∑ 𝛷𝐺𝑅(𝑚,subregion,sample) × 𝐶𝑤−𝑃𝐹𝐴𝑆(sample)subregion ∈ region
11
𝑚=0 (11) 

The 𝐶𝑤−𝑃𝐹𝐴𝑆(sample) (pg L-1) is the corresponding PFAA concentration of the elected sample, 

and the 𝛷𝐺𝑅(𝑚,subregion,sample)  (km3 year−1) are the monthly glacier runoff fluxes of the 

subregion where the sample elected for that concentration in water belong to.  

The MCS for PFAA release fluxes on suspended particles contained 5 steps: 1) calibration of 

monthly precipitations, monthly average air temperature, and effective glacier area by measured 

or documented data, 2) simulations for monthly environmental descriptors of logPOC, POC, 

and water temperature, 3) evaluation of monthly logKd by optimized XGBoost algorithm, 4) 

evaluation of monthly glacier runoff volume, and 5) computation of PFAA fluxes on suspended 

particles. The calibration in the first step, the glacier runoff volume evaluation in fourth step, 

and annual PFAA flux calculation in final step were the same to the first, second, and third step 

for MCS for water phase, respectively. 

http://www.glims.org/RGI/
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The average concentrations of suspended particles (ACSP, mg L-1) were fixed within each 

subregion (Table 1). The water temperatures were randomly elected based on gaussian 

distribution with mean value 2.5℃, and standard deviation 0.1℃. The results of MCS for PFAA 

fluxes in water phase and those for PFAA fluxes in suspended particles are in Table S6. 

Of note, although we collected PFAAs from all glacial regions worldwide, even including some 

data from seawater neighboring the glaciers, PFAA concentration data are currently not 

available for large glaciers in Patagonia and the southern Andes. Glaciers in these regions are 

among the most rapidly retreating on Earth and this lack of data is likely to lead to an 

underestimation of the global release of PFAAs from glacial regions.
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Note S7. PFAA levels in atmospheric particulate matter in remote regions 

To date, the only long-term atmospheric observation in remote areas was conducted under the 

Arctic Monitoring and Assessment Programme (AMAP). From 2006 to 2015, air samples were 

collected at the Canadian High Arctic station of Alert, Nunavut, Canada (82°30′N, 62°20′W), 

the Norwegian-operated stations of Zeppelin, Svalbard, Norway (78°54 ′N, 11°53 ′E) and 

Andøya, Norway (62°16′N, 16°0′E) to monitor the variation of atmospheric PFAA levels.7 

As perfluorooctane sulfonic acid (PFOS) was the first PFAA compound regulated under the 

Stockholm Convention, it might serve as a key indicator for the fluctuations of PFAA 

compounds in the atmosphere. Accordingly, Note S2-Figure 1 illustrates the seasonal variations 

and trends of PFOS at these three Arctic stations. PFOS levels at Alert are on the rise, with 

doubling times ranging from 2.5 to 3.7 years. In contrast, PFOS levels at Zeppelin exhibit an 

exceptional prolonged half-life (t1/2) of 67 years. Meanwhile, at Andøya, PFOS concentrations 

are slowly decreasing with a t1/2 of 11 years. 

These data suggest that the concentrations of PFOS in the polar atmosphere have experienced 

a slight increase or slow decrease over recent years. This is not surprising because although the 

use of PFOS and its precursors have been largely phased out globally, they are still stored in 

stockpiles or being slowly released from products still in use, environmental media and waste 

streams (e.g., landfills). Moreover, there could well be a longer time-lag in concentration 

declines for PFOS in remote locations in response to the emission reductions in source regions. 

If the occurrence of PFAAs in remote locations is result of long-range oceanic transport,8,9 and 

remobilization to the atmosphere in sea spray aerosol,10,11 it will take many years for the 

atmospheric concentration to decline since long-range ocean transport is a slow process of the 

order of several years to decades, depending on the location of the source region. 

In our expert opinion, given the multiple transport pathways for PFOS, atmospheric deposition 

of PFOS will continue in remote regions for the coming decades, resulting in a relatively stable 

concentration. 
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Note S7-Figure 1. Seasonal cycles and trends of PFOS in Alert, Zeppelin, Andoya. 

Note: Doubling times (t2) or half-lives (t1/2) are shown in units of years (y). The measured data 

are shown as blue crosses, the black line is the seasonal cycle, and the pink line is the trend 

derived from the Digital Filtration model. Dash pink lines indicate the lower and upper 95% 

confidence limits of the trend. r2 indicates the correlation coefficient between the trend and 

measured data. r2 is only shown for statistically significant correlations at 95% confidence. The 

instrumental detection limit (IDL) and method detection limit (MDL) are shown as dash black 

and red lines, respectively. This figure is reproduced from Wong et al. (2018) 7 with permission 

under the CC BY-NC-ND license. 
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Supplemental Tables 

Table S1. Physical and chemical parameters of the 13 PFAAs analyzed in this study. 

Analyte Acronym CAS No. Formula Carbon chain length Molecular structure logKow-ionic
12 

Perfluorocarboxylic acids (PFCAs)       

Perfluorobutanoic acid PFBA 375-22-4 C3F7COOH C4 

 

-2.78 

Perfluoropentanoic acid PFPeA 2706-90-3 C4F9COOH C5 

 

-2.25 

Perfluorohexanoic acid PFHxA 307-24-4 C5F11COOH C6 

 

-1.78 

Perfluoroheptanoic acid PFHpA 375-85-9 C6F13COOH C7 

 

-1.23 

Perfluoro-octanoic acid PFOA 335-67-1 C7F15COOH C8 

 

-0.76 

Perfluorononanoic acid PFNA 375-95-1 C8F17COOH C9 

 

-0.25 

Perfluorodecanoic acid PFDA 335-76-2 C9F19COOH C10 

 

0.31 

javascript:;
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Analyte Acronym CAS No. Formula Carbon chain length Molecular structure logKow-ionic
12 

Perfluoroundecanoic acid PFUdA 2058-94-8 C10F21COOH C11 

 

0.79 

Perfluorododecanoic acid PFDoA 307-55-1 C11F23COOH C12 

 

1.37 

Perfluorotridecanoic acid PFTrDA 72629-94-8 C12F25COOH C13 

 

1.90 

Perfluoroalkane sulfonic acids (PFSAs)       

Perfluorobutane sulfonic acid PFBS 375-73-5 C4F9SO2O- C4 

 

-3.55 

Perfluorohexane sulfonic acid PFHxS 355-46-4 C6F13SO2O- C6 

 

-2.50 

Perfluorooctane sulfonic acid PFOS 1763-23-1 C8F17SO2O- C8 

 

-1.49 

javascript:;
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Table S2. Dataset of the individual and total PFAA concentrations (pg L-1) in snow/ice, meltwater, and neighboring seawater in global glacial regions. 

Glacial region Type Year Number(n) PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUdA PFDoA PFTrDA PFBS PFHxS PFOS Σ13PFAAs Ref. 

Western Canada and USA (WCUG) 25                

Near Alaskan 

glaciers 
Seawater 2012 7 n.r. <LOD <LOD 4.29 32.3 11.0 2.14 <LOD 1.14 <LOD 1.57 2.29 15.6 70.3 13 

Melville ice cap Snow/ice 
2005-

2006 
2 n.r. n.r. n.r. n.r. 27.5 8.70 3.05 1.40 n.r. n.r. n.r. n.r. 3.50 44.1 14 

Near Alaskan 

glaciers 
Seawater 

2010-

2014 
4 1.40 27.8 72.9 12.6 22.0 <LOD 32.6 15.0 3.50 n.r. 0.50 116 132 436 15 

Cedar Lake, 

Western Canada 
Glacial runoff 2004 12 n.r. n.r. n.r. n.r. 761 598 136 77.5 n.r. n.r. n.r. n.r. 66.8 1639 16 

Arctic Canada (ACG) 179                

Agassiz, Devon & 

Meighen ice cap 
Snow/ice 

2005-

2006 
4 n.r. n.r. n.r. n.r. 24.6 10.2 3.23 2.25 n.r. n.r. n.r. n.r. 2.33 42.6 14 

Devon ice cap Snow/ice 2015 37 <LOD 40.5 81.7 166 164 275 40.8 53.3 0.34 <LOD 0.30 0.49 39.8 862 17 

Ice caps in the 

Garfield Range, 

Lake Hazen basin 

Snow/ice 2008 3 n.r. n.r. n.r. 207 218 220 29.3 21.0 n.r. n.r. 8.67 6.00 37.0 747 18 

Ellesmere Island Glacial runoff 
2012-

2014 
25 1993 701 850 1060 1176 450 73.2 24.0 6.25 5.56 93.7 17.9 60.6 6512 19 

Ellesmere Island Snow/ice 2013 27 5467 387 513 1017 1703 1363 343 186 69.3 14.0 6.33 <LOD 133 11202 20 

Devon ice cap Snow/ice 
2015-

2017 
83 370 n.r. n.r. n.r. n.r. n.r. n.r. n.r. n.r. n.r. n.r. n.r. n.r. 370 21 

Greenland ice sheet (GIS) 10                

Central Arctic Seawater 2018 10 n.r. <LOD 62.7 33.5 51.1 38.2 1.96 4.87 <LOD <LOD 40.0 <LOD 37.4 270 22 

Arctic Europe (AEG) 245                
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Glacial region Type Year Number(n) PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUdA PFDoA PFTrDA PFBS PFHxS PFOS Σ13PFAAs Ref. 

North Barents Sea 

(PS80/364, 

PS80/275, 

PS80/227, 

PS80/254) 

Seawater 2012 3 n.r. <LOD 4.00 11.0 16.7 12.3 <LOD <LOD <LOD <LOD 8.67 5.00 22.3 80.0 13 

Ice station 

(PS80/224, 

PS80/255) 

Glacial runoff 2012 2 n.r. <LOD 15.5 34.0 59.5 95.5 7.00 6.50 <LOD <LOD <LOD <LOD 38.0 256 13 

Ice station 

(PS80/360) 
Snow/ice 2012 2 n.r. <LOD 35.0 19.5 81.5 47.0 41.0 33.0 <LOD <LOD <LOD <LOD 38.5 296 13 

Ny-Ålesund Glacial runoff 
2014-

2016 
27 1970 <LOD 16.7 89.2 207 61.5 59.9 <LOD 17.9 <LOD <LOD 119.6 248 2790 23 

Ny-Ålesund Seawater 
2014-

2016 
4 530 710 1420 242.5 155 7.50 <LOD <LOD <LOD <LOD 43.8 160 180 3449 23 

Northern Swedish 

glacier 
Glacial runoff 2013 44 1471 n.r. 448 428 905 766 431 198 90.3 n.r. 2150 1839 1050 9708 24 

Northern Barents 

Sea 
Seawater - 5 126 39.2 83.2 336 600 172 444 86.8 105 16.8 <LOD <LOD 31.2 2040 25 

Nansen Basin 
Glacial runoff - 6 836 59.5 58.0 120 42.0 45.5 4.50 6.00 10.5 <LOD <LOD <LOD <LOD 1185 25 

Snow/ice - 40 1571 38.6 78.6 90.9 130 46.4 68.7 22.8 19.3 2.60 1070 <LOD <LOD 3151 25 

Transect from 

European 

continent to the 

Arctic and Fram 

Strait 

Seawater 2018 30 n.r. <LOD 56.7 38.7 66.1 37.6 9.72 9.23 2.80 <LOD 38.4 12.4 64.7 336 22 

Isfjorden Seawater 2006 3 57.2 352 55.7 14.6 74.4 38.6 <LOD <LOD <LOD <LOD <LOD 27.5 109 729 26 
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Glacial region Type Year Number(n) PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUdA PFDoA PFTrDA PFBS PFHxS PFOS Σ13PFAAs Ref. 

Svalbard Glacial runoff 2006 10 809 964 197 136 226 93.0 14.6 9.07 6.87 <LOD <LOD 95.3 187 2738 26 

Longyearbreen 

glacier 
Snow/ice 2006 35 86.7 25.2 30.3 19.6 85.7 51.5 18.4 6.38 4.63 <LOD <LOD 2.63 27.2 358 26 

Kongsfjorden Seawater 
2016-

2017 
10 775 233 <LOD 52.9 <LOD 12.5 <LOD <LOD <LOD <LOD 80.0 <LOD <LOD 1153 27 

Umeå N. Sweden Snow/ice 2009 24 335 165 46.9 2.10 66.5 26.9 16.9 12.7 5.00 <LOD 98.7 25.1 20.50 821 28 

North Asia (NAG) 14                

Arctic Ocean over 

the Nansen and 

Amundsen basins, 

close to Russia 

Seawater 2012 1 n.r. <LOD 24.0 <LOD 30.0 39.0 <LOD 17.0 <LOD <LOD 12.0 <LOD 18.0 140 13 

Snow/ice 2012 1 n.r. <LOD 109 49.0 294 253 142 92.0 88.0 <LOD <LOD 18.0 343 1388 13 

Chukchi Sea Seawater 2010 12 175 24.2 7.58 36.6 178 86.8 89.3 38.1 12.0 84.2 168 <LOD 17.3 918 29 

Central Europe (CEG) 2                

Colle Gnifetti Snow/ice 2008 1 690 <LOD 60.0 40.0 300 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 1090 30 

Alto dell’Ortles 

glacier 
Snow/ice 2007 1 1410 60.0 110 160 380 220 120 <LOD <LOD <LOD <LOD <LOD <LOD 2460 31 

South and Central Asia (SCAG) 194                

Khumbu glacier Snow/ice 2019 6 n.r. n.r. 1352 <LOD 1752 n.r. n.r. n.r. n.r. n.r. n.r. n.r. 6260 9363 32 

Khumbu glacier Glacial runoff 2019 3 n.r. n.r. 340 <LOD 1323 n.r. n.r. n.r. n.r. n.r. n.r. n.r. 413 2077 32 

Altai Snow/ice 2015 1 633 24.5 34.5 29.9 123 100 200 34.5 10.3 23.4 23.2 3.40 335 1576 33 

Urumqi No. 1 

glacier 
Snow/ice 2016 1 588 38.6 38.4 34.2 325 98.3 453 22.5 12.3 3.40 15.5 6.80 698 2335 33 

Kaerlike glacier Snow/ice 2016 1 437 73.4 11.3 22.4 231 76.5 87.8 34.8 7.20 5.60 28.9 3.50 285 1305 33 

Muztag glacier Snow/ice 2016 1 454 103.6 29.9 89.3 234 75.3 69.2 17.9 4.50 1.50 25.2 2.90 233 1341 33 

Laohugou No. 12 

glacier 
Snow/ice 2015 1 783 38.7 33.7 49.5 72.8 76.9 135 17.8 3.40 1.80 39.5 5.70 995 2252 33 
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Glacial region Type Year Number(n) PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUdA PFDoA PFTrDA PFBS PFHxS PFOS Σ13PFAAs Ref. 

Germu Snow/ice 2015 1 378 55.6 14.4 98.3 123 101 111 34.5 5.20 3.50 38.2 2.60 849 1815 33 

Ali Glacier Snow/ice 2016 1 95.5 34.9 56.2 87.3 137 129 231 29.5 4.70 3.50 5.50 3.60 295 1113 33 

Shuanghu glacier Snow/ice 2016 1 385 86.8 64.7 64.3 47.8 67.9 34.4 76.2 8.60 9.20 9.70 1.80 386 1242 33 

Guoqu Snow/ice 2015 1 283 79.5 12.3 67.4 103 98.7 64.5 33.4 3.70 6.50 6.90 2.80 110 872 33 

Pulan glacier Snow/ice 2016 1 222 99.3 34.2 83.4 634 230 233 15.3 8.50 4.20 25.4 3.60 278 1872 33 

Nianqin glacier Snow/ice 2015 1 184 65.8 44.3 65.3 589 384 221 26.4 8.30 3.50 13.7 4.70 273 1883 33 

Jimayangzong 

glacier 
Snow/ice 2016 1 395 78.6 27.5 27.8 765 188 342 26.7 6.90 2.50 43.5 3.60 110 2017 33 

Ranwu Snow/ice 2017 1 654 46.9 23.8 45.3 670 453 295 38.5 9.40 3.70 66.8 5.90 390 2702 33 

East Rongbuk 

glacier 
Snow/ice 2016 1 375 77.8 33.6 27.4 399 346 565 25.1 6.40 3.50 12.6 7.60 193 2071 33 

Yulong, Baishui 

No. 1 glacier 
Snow/ice 2017 1 745 96.4 43.2 105 1089 654 340 24.5 5.50 4.70 67.8 9.20 783 3968 33 

Mt Zuoqiupu 

glacier 
Snow/ice 2007 1 36.7 39.4 <LOD <LOD 183 25.7 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 285 6 

Mt Muztagata 

glacie 
Snow/ice 1999 1 <LOD 142 100 <LOD 243 42.2 50.0 9.97 33.1 <LOD <LOD <LOD 308 928 6 

Zhadang glacier Snow/ice 2010 8 1905 241 118 516 148 74.1 24.5 9.66 7.41 <LOD <LOD <LOD 44.1 3087 6 

Zhadang glacier Snow/ice 2017 12 541 155 61.4 78.6 1490 96.0 59.0 45.2 11.3 3.73 140 10.2 62.9 1412 3 

Zhadang glacier Glacial runoff 2017 89 641 170 46.7 79.4 63.7 33.6 18.1 4.97 9.63 2.79 59.9 14.6 69.4 1215 3 

Korchung Gangri 

glacier 
Glacial runoff 2019 8 714 59.2 55.2 63.7 46.4 40.8 8.70 9.81 1.54 0.32 52.3 10.9 33.6 1096 

This 

study 

Zhadang glacier Glacial runoff 2019 8 599 110 43.5 45.3 123 59.2 39.6 14.0 9.69 1.19 34.1 8.42 55.6 1143 
This 

study 

Galongla glacier Glacial runoff 2019 7 206 43.0 28.9 19.2 30.3 11.6 8.67 4.76 0.12 <LOD 45.0 3.38 109 510 
This 

study 
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Glacial region Type Year Number(n) PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUdA PFDoA PFTrDA PFBS PFHxS PFOS Σ13PFAAs Ref. 

Parlung No. 4 

glacier 
Glacial runoff 2019 8 272 33.4 15.5 26.6 24.8 13.0 2.92 2.70 0.38 <LOD 82.9 3.96 16.2 494 

This 

study 

Qiangyong 

glacier 
Glacial runoff 2019 8 379 72.9 51.5 61.9 49.6 23.3 5.26 3.35 <LOD <LOD 43.2 7.59 20.5 718 

This 

study 

Rijie Cojia glacier Glacial runoff 2019 8 697 89.6 41.8 29.9 44.0 12.2 12.5 5.69 1.66 0.15 90.1 7.02 14.4 1046 
This 

study 

Rongbuk glacier Glacial runoff 2020 12 4606 137 113 89.5 91.1 31.0 6.28 2.59 1.73 1.05 252 35.8 64.2 5431 
This 

study 

Antarctic and Subantarctic ice sheet (AIS) 70                

Livingston Island Snow/ice 
2014-

2015 
16 154 7.91 42.4 73.8 239 62.4 96.8 29.0 21.6 3.60 n.r. 1.79 62.9 795 34 

Livingston Island Glacial runoff 
2014-

2015 
3 420 <LOD 7.07 27.3 38.7 22.0 6.63 5.70 1.73 0.61 n.r. 2.79 11.9 544 34 

King George 

Island 
Seawater 2011 10 22.2 58.3 199 2.81 3414 <LOD 0.00 13.4 4.07 90.2 3.16 <LOD <LOD 3806 35 

King George 

Island 
Snow/ice 2011 4 522 73.9 309 <LOD 197 48.3 33.3 79.4 47.3 190 4.15 <LOD <LOD 1504 35 

King George 

Island 
Glacial runoff 2011 5 2096 49.8 111 76.0 454 21.6 <LOD 2.32 <LOD 874 15.2 <LOD <LOD 3699 35 

Dome C Snow/ice 2016 11 <LOD 175 221 183 359 73.1 30.5 7.94 3.92 2.14 24.0 5.95 46.2 1131 36 

Larsemann Hills Glacial runoff 
2015-

2016 
21 <LOD 23.5 5.29 5.78 56.6 1.36 20.8 3.16 0.92 3.21 9.76 12.5 3.82 147 37 

Note: Number (n) refers to the reported sample count. Concentrations of individual PFAAs in this table represent average values when n>1. “n.r.” indicates that the compound 

was not reported, while “<LOD” represents concentrations below the limit of detection (LOD).
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Table S3. The average concentrations and standard deviation (SD) of individual and total PFAAs (pg L-1) in the eight glacial regions calculated based on 

the global dataset. 

Glacial region Type PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUdA PFDoA PFTrDA PFBS PFHxS PFOS Σ13PFAAs 

WCUG 
Average 0.77 13.4 28.0 8.04 275 205 51.2 32.6 4.95 5.37 2.30 44.8 43.2 715 

SD 0.43 11.1 33.7 4.14 418 303 68.6 55.6 2.51 2.90 2.01 54.1 45.7 1002 

ACG 
Average 2112 276 378 570 518 390 82.0 53.6 22.2 6.77 24.1 6.46 46.0 4486 

SD 2562 477 518 718 836 563 153 87.5 39.7 9.70 50.2 11.9 67.0 6093 

GIS 
Average - 12.4 62.7 33.5 51.1 38.2 1.96 4.87 1.81 2.55 40.0 10.0 37.4 297 

SD - 6.83 0.00 0.00 0.00 0.00 0.00 0.00 0.98 1.36 0.00 5.33 0.00 14.5 

AEG 
Average 1219 112 109 71.7 139 61.9 44.7 35.9 15.1 2.87 118 97.0 135 2162 

SD 1903 217 309 107 236 164 132 55.8 30.9 3.33 667 594 290 4710 

NAG 
Average 231 25.8 26.4 37.5 177 94.7 87.9 43.2 20.2 80.6 147 32.2 46.5 1050 

SD 300 19.2 26.9 33.3 169 62.6 64.3 35.7 27.8 144 374 20.0 84.2 1362 

ECG 
Average 1047 38.2 85.2 100 340 141 78.1 54.9 43.6 44.2 - - 87.5 2060 

SD 360 22.2 25.0 60.0 40.0 82.7 44.0 31.5 22.9 22.7 - - 49.5 760 

SCAG 
Average 1203 145 88.8 87.5 152 69.0 43.4 22.8 8.31 3.22 117 14.4 179 2133 

SD 1817 89.7 224 93.0 341 79.2 71.6 37.2 6.30 3.40 152 12.9 1338 4264 

AIS 
Average 809 102 150 107 538 50.1 34.3 13.3 7.08 17.4 16.5 6.88 34.3 1886 

SD 915 104 127 93.9 1680 45.6 58.4 30.8 23.1 57.7 9.92 5.44 68.4 3219 

Note: -, data not available. WCUG, Western Canada and USA; ACG, Arctic Canada; GIS, Greenland ice sheet; AEG, Arctic Europe; NAG, North Asia; CEG, Central Europe; 

SCAG, South and Central Asia; AIS, Antarctic and Subantarctic ice sheet. PFBA, perfluorobutanoic acid; PFPeA, perfluoropentanoic acid; PFHxA, perfluorohexanoic acid; 

PFHpA, perfluoroheptanoic acid; PFOA, perfluoro-octanoic acid; PFNA, perfluorononanoic acid; PFDA, perfluorodecanoic acid; PFUdA, perfluoroundecanoic acid; PFDoA, 

perfluorododecanoic acid; PFTrDA, perfluorotridecanoic acid; PFBS, perfluorobutane sulfonic acid; PFHxS, perfluorohexane sulfonic acid; and PFOS, perfluoro-octane 

sulfonic acid. 
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Table S4. The dataset of measured logKd of individual PFAAs with the associated water temperature (Tw, ℃), particulate organic carbon (POC, %) 

Region type 
Data 

count 

logKd of PFCAs 

(acid type: carboxylic acids) 

logKd of PFSAs 

(acid type: sulfonic acids) Tw POC Ref. 

PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUdA PFDoA PFTrDA PFBS PFHxS PFOS 

Glacial regions 

(n=191) 

13 1.82  2.91  3.06  2.68  3.41  2.74  3.38  4.21  4.54  5.43  2.92  4.02  3.58  0.20  0.52  

This 

study 

13 1.94  2.65  2.42  2.06  3.01  2.71  3.28  3.96  3.72  4.69  2.85  3.58  2.35  1.70  0.31  

12 1.78  2.08  2.28  2.00  2.73  2.36  2.96  3.81  3.61  - 1.83  2.95  2.40  2.50  0.24  

9 - 2.99  3.12  2.95  3.55  3.28  4.13  4.37  - - 2.80  - 3.76  0.20  1.04  

7 1.97  2.23  - - 2.61  2.18  2.90  3.41  - - - - 2.83  3.90  0.86  

8 - 1.73  2.00  1.47  2.23  2.04  2.78  3.31  - - - - 2.38  3.20  0.61  

13 2.05  2.87  3.04  2.98  3.36  3.25  3.31  3.85  3.41  3.73  3.30  3.19  3.39  0.20  0.33  

13 1.75  2.30  2.37  2.61  3.05  2.90  3.10  3.62  2.94  4.07  3.74  3.20  2.94  2.60  0.27  

13 1.20  2.40  2.48  2.12  2.85  2.90  2.62  3.20  3.20  4.26  2.83  3.12  3.26  1.80  0.33  

13 2.79  2.86  3.11  2.94  3.32  3.18  3.09  3.62  3.95  3.64  4.08  3.04  2.14  9.20  4.00  

13 2.49  2.79  3.22  2.25  3.10  3.21  3.19  3.68  3.15  3.67  4.65  3.65  3.20  8.40  2.17  

13 2.67  2.12  3.06  2.89  2.78  2.54  3.10  2.97  3.45  3.55  2.41  3.79  2.85  0.30  1.56  

10 - 1.60  1.95  2.13  2.05  2.90  2.52  2.37  2.47  - - 3.17  2.56  11.70  2.47  

38 

7 - 1.37  2.13  2.13  2.60  - 2.51  - - - - 2.73  2.49  11.70  2.47  

7 - 1.14  - - 1.58  2.79   2.90  2.67  - - 3.20  3.03  11.70  2.47  

7 - 2.43  1.77  1.65  2.03  3.00  2.69  - - - - - 3.03  11.70  2.47  

8 - 1.06  - 1.82  2.52  3.33  2.73  - 3.03  - - 2.73  2.87  12.30  2.49  

2 - 1.65  - - - - - - - - - - 2.60  12.30  2.49  

3 - - - 2.25  2.13  - - - - - - - 3.27  12.30  2.49  

1 - - - - - - - 3.09  - - - - - 14.81  0.30  
39 

3 - 1.06  - - - - - - - - - 2.15  2.61  14.33  0.91  
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1 - - - - - - - - - - 2.17  - - 15.81  1.03  

1 - - - 2.36  - - - - - - - - - 13.67  1.53  

1 - - - - 0.95  - - - - - - - - 17.48  2.50  

Inland watersheds 

(n=158) 

5 2.00  2.30  - 2.10  - - - - - 2.40  1.80  - - 1.18  2.00  

40 
2 - - 2.20  - 2.70  - - - - - - - - 1.18  1.59  

5 2.00  2.20  - 2.20  2.20  - - - - - 1.80  - - 3.55  1.59  

1 - - 2.20  - - - - - - - - - - 3.55  2.00  

4 - - - - 0.45  2.13  2.96  - - - - - 2.36  15.00  12.32  

41 

4 - - - - 0.30  2.19  3.15  - - - - - 2.22  15.00  11.54  

4 - - - - 0.47  2.10  2.79  - - - - - 2.20  15.00  11.09  

4 - - - - 0.57  2.12  2.69  - - - - - 2.21  15.00  10.23  

4 - - - - 0.49  1.94  2.72  - - - - - 2.45  15.00  10.19  

4 - - - - 0.63  2.06  2.45  - - - - - 2.66  15.00  9.78  

4 - - - - 0.77  1.76  2.48  - - - - - 2.68  15.00  12.03  

4 - - - - 0.72  1.78  2.46  - - - - - 2.62  15.00  12.32  

4 - - - - 0.56  1.62  2.34  - - - - - 2.68  15.00  13.24  

4 - - - - 0.70  1.94  2.74  - - - - - 2.67  15.00  12.79  

4 - - - - 0.56  1.55  2.41  - - - - - 2.79  15.00  14.25  

4 - - - - 0.70  1.76  2.23  - - - - - 2.77  15.00  13.24  

4 - - - - 0.74  1.84  2.39  - - - - - 2.80  15.00  11.35  

4 - - - - 0.40  1.81  2.29  - - - - - 2.56  15.00  8.23  

4 - - - - 0.54  1.63  2.40  - - - - - 2.50  15.00  9.42  

4 - - - - 0.75  1.72  2.16  - - - - - 2.26  15.00  10.21  

4 - - - - 0.58  1.44  2.08  - - - - - 2.42  15.00  9.78  

4 - - - - 0.87  1.80  2.23  - - - - - 2.51  15.00  8.94  

4 - - - - 0.45  1.61  2.30  - - - - - 2.62  15.00  7.32  
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4 - - - - 0.48  1.86  2.22  - - - - - 2.54  15.00  6.23  

5 1.40  - 0.90  - - - - - - - 0.80  1.10  2.19  8.00  0.93  

42 

5 1.20  - 0.80  - - - - - - - 0.60  1.00  2.10  8.00  0.86  

5 2.59  2.52  - 1.84  1.02  2.47  - - - - - - - 15.00  1.17  

7 - 2.26  2.03  2.19  1.55  - 1.53  - - - - 2.55  1.70  12.00  0.90  

7 1.63  1.74  - 1.96  0.96  2.28  2.47  - - - - - 2.05  15.00  0.58  

5 2.48  2.33  - 1.80  1.00  - 2.18  - - - - - - 13.00  1.19  

6 2.37  1.06  - 2.01  1.07  2.22  2.39  - - - - - - 12.00  0.80  

7 1.92  2.05  - 1.93  1.35  - 2.97  3.37  - - - 2.74  - 15.00  1.06  

4 1.67  1.95  - 1.47  0.84  - - - - - - - - 12.00  0.85  

7 2.18  1.90  - 1.78  1.18  - 2.57  - 3.02  - - - 2.21  15.00  1.33  

7 - - 2.18  1.43  1.91  2.47  - - 2.49  - - 2.47  2.73  18.89  0.87  43 

Coastal areas 

(n=422) 

3 - - -0.01  - 0.27  - - - - - - - 1.16  15.00  1.70  

44 

3 - - -0.06  - 0.15  - - - - - - - 1.03  15.00  0.50  

3 - - 0.36  - 0.64  - - - - - - - 1.39  15.00  2.70  

3 - - 0.03  - 0.26  - - - - - - - 0.99  15.00  1.20  

3 - - 0.76  - 0.82  - - - - - - - 1.55  15.00  5.10  

3 - - 0.26  - 0.35  - - - - - - - 1.24  15.00  1.10  

3 - - -0.36  - 0.05  - - - - - - - 0.66  15.00  0.30  

3 - - 0.50  - 0.42  - - - - - - - 1.48  15.00  3.60  

3 - - -0.14  - 0.11  - - - - - - - 0.98  15.00  0.70  

3 - - 0.38  - 0.43  - - - - - - - 1.26  15.00  4.90  

3 - - 0.54  - 0.74  - - - - - - - 1.54  15.00  2.90  

3 - - 0.54  - 0.79  - - - - - - - 1.57  15.00  5.70  

3 - - -0.46  - -0.03  - - - - - - - 0.58  15.00  0.10  

3 - - 0.89  - 1.17  - - - - - - - 2.01  15.00  11.20  

3 - - 0.62  - 0.64  - - - - - - - 1.65  15.00  5.90  
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3 - - 0.45  - 0.52  - - - - - - - 1.55  15.00  3.30  

3 - - 0.91  - 1.09  - - - - - - - 1.94  15.00  10.00  

3 - - 0.79  - 1.05  - - - - - - - 1.85  15.00  10.10  

3 - - 0.79  - 0.99  - - - - - - - 1.71  15.00  5.60  

11 1.28  1.69  0.92  - 2.96  2.44  2.54  3.02  2.27  - 1.75  1.83  2.47  9.58  0.77  

45 

11 1.16  1.75  0.95  1.87  2.93  2.49  2.69  3.18  - - 2.50  1.73  2.30  9.24  1.05  

12 1.30  1.55  1.11  1.95  2.75  2.35  2.60  3.07  1.70  - 1.94  1.46  2.52  10.42  3.53  

12 1.37  1.47  1.08  2.20  2.83  2.66  3.20  3.48  2.51  - 1.94  1.32  2.76  11.29  4.15  

11 - 1.65  1.30  2.56  2.91  2.62  2.79  3.38  2.47  - 2.02  1.79  2.77  11.16  4.98  

12 1.08  1.76  1.34  2.50  2.96  2.63  2.33  3.24  2.14  - 2.07  1.73  2.80  11.33  4.23  

10 1.02  - 1.25  - 3.02  2.32  2.85  3.01  2.03  - 1.92  1.63  2.78  10.89  4.86  

12 1.02  1.95  1.17  2.44  3.04  2.51  2.64  3.26  2.16  - 2.06  1.68  2.76  11.19  5.23  

12 1.18  1.70  1.15  2.35  3.07  2.69  2.41  3.37  2.16  - 2.06  1.46  2.70  10.45  4.35  

11 0.88  1.35  1.22  1.91  2.93  2.85  3.04  3.29  - - 2.36  1.63  2.54  10.11  4.20  

8 1.11  1.79  1.23  2.32  - - 2.73  - 2.07  -  1.75  2.18  9.25  3.33  

9 1.46  1.77  1.24  2.06  - - 2.63  - 1.89  - 1.84  1.91  2.41  8.62  3.41  

9 1.02  - 1.45  1.90  - 2.23  2.88  - 2.01  - 2.12  1.95  2.40  8.47  2.55  

8 1.35  1.16  1.64  - - 2.85   - 2.22  - 2.15  1.83  2.00  8.03  2.00  

9 0.61  0.51  1.00  - - 1.63  2.52  - 1.88  - 1.42  1.10  1.70  8.03  4.31  

7 - - - 2.25  - 2.82  2.88  - 1.75  - 1.97  2.03  2.56  8.24  1.67  

10 1.59  - 1.47  2.27  2.56  2.75  2.92  - 2.26  - 2.04  1.83  1.36  8.89  2.74  

10 1.23  2.08  1.35  2.41  2.86  - 2.83  - 2.61  - 2.63  1.87  2.75  10.36  2.14  

10 1.51  - 1.42  2.70  - 2.76  3.10  3.42  2.16  - 2.09  1.81  2.55  10.90  3.60  

10 1.16  1.78  1.25  2.36  2.71  - 2.64  - 2.49  - 2.08  1.57  2.73  10.83  4.29  

9 1.27  1.51  1.41  -  2.50  3.01  - 2.31  - 2.03  1.48  2.85  10.40  4.65  

9 1.34  - 1.37  - 2.98  2.46  2.98  - 2.04  - 1.97  1.75  2.58  10.17  3.84  

11 1.22  1.77  1.42  2.40  - 2.59  3.12  3.38  1.93  - 2.31  1.81  2.59  10.24  4.02  
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9 1.23  - 1.09  2.24  2.55  - 2.64  - 1.75  - 1.75  1.62  2.41  9.40  4.14  

9 1.14  - 1.30  - 2.68  2.31  2.98  - 1.76  - 2.07  1.61  2.61  8.03  3.95  

11 1.41  - 1.81  2.41  2.82  2.54  3.02  3.31  1.70  - 2.32  1.75  1.63  8.85  3.51  

10 - 1.78  1.43  2.22  - 2.76  2.41  3.74  1.84  - 1.95  1.93  2.49  9.75  2.29  

11 - 1.25  1.75  2.10  3.05  2.65  2.73  3.52  1.47  - 1.83  2.01  2.84  8.45  1.29  

10 0.99  0.91  1.93  2.22  - 2.35  2.89  - 1.51  - 1.72  1.84  2.70  7.95  1.74  

10 1.42  1.44  1.01  - 2.74  2.20  2.79  - 2.03  - 2.09  1.40  2.38  10.15  4.97  

10 1.47  1.41  0.89  - 2.79  2.46  2.59  - 1.73  - 2.08  1.75  2.44  11.32  6.48  

10 1.51  1.69  1.26  - 2.83  2.53  2.54  - 1.97  - 2.17  1.59  2.31  11.16  4.90  

10 1.11  1.25  1.06  2.25  2.84  - 2.58  - 1.88  - 1.74  1.55  2.41  11.02  6.17  

11 1.49  1.00  1.37  2.23  2.50  2.58  2.93  - 1.83  - 1.97  1.72  2.09  10.64  5.13  

11 1.60  1.52  1.20  1.71  2.72  2.47  2.91  - 1.90  - 2.14  1.84  2.06  10.69  2.32  

10 1.09  1.26  1.55  2.11  - 2.60  2.81  - 2.02  - 2.21  1.73  2.32  9.19  1.54  

Note: -, data not available. This dataset, which includes logKd, Tw, POC values from glacial and non-glacial regions (inland watershed and coastal areas), was used to 

train the machine learning models discussed in the Methods section in the main manuscript and Note S1. The logKow-ionic for each PFAAs used in the dataset is a constant 

which is available in Table S1. 
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Table S5. The average concentrations and standard deviation (SD) of individual and total PFAAs (pg g−1 dry weight) in suspended particles in the 

eight global glacial regions using XGBoost-ML established in this study. 

Glacial region Type PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUdA PFDoA PFTrDA PFBS PFHxS PFOS Σ13PFAAs 

WCUG 
Average 0.01 0.4 1.11 0.17 22.5 10.8 8.80 24.9 4.97 26.8 0.46 15.6 5.75 122 

SD 0.04 1.22 3.97 0.62 124 69.6 42.2 147 17.4 97.2 1.37 62.4 25.6 593 

ACG 
Average 7.72 4.49 8.38 7.99 32.8 14.2 4.37 10.1 2.57 4.3 2.8 0.97 3.87 104 

SD 11.9 9.79 14.3 12.8 64.9 25.4 9.93 20.6 5.54 7.65 7.09 2.21 7.07 199 

GIS 
Average - 3.35 22.2 6.46 37.8 16.9 3.02 31 12.1 80.4 62.3 30.7 51.2 357 

SD - 21.4 103 35.0 201 71.7 17.9 151 65.8 392 397 298 320 2075 

AEG 
Average 6.8 3.36 4.01 1.65 14.5 4.57 3.85 11 3.26 3.36 17.1 20.4 18.3 112 

SD 43.2 38.1 40.9 12.5 109 56.8 32.9 65.3 32.9 19.9 190 283 151 1075 

NAG 
Average 5.53 1.15 2.18 1.49 24.5 7.75 20 28.1 10.1 141 35.3 13.1 8.98 299 

SD 31.1 6.06 17.1 7.63 146 32.8 123 138 70.4 1086 429 58.7 61.3 2207 

CEG 
Average 15.0 2.31 7.46 5.39 82.1 20.3 15.9 40.6 19.8 113 - - 30.3 352 

SD 11.6 2.28 5.52 5.23 54.3 19.2 15.5 36.8 18.1 102 - - 27.2 298 

SCAG 
Average 34.6 11.4 9.59 5.35 36.7 9.4 18.9 41.7 15.5 28.4 48.5 12.2 77.9 350 

SD 67.7 12.1 33.0 8.19 106 14.5 39.9 92.2 18.7 44.6 83.6 16.6 751 1288 

AIS 
Average 3.42 1.38 2.27 1.00 26.8 1.71 2.52 3.72 1.25 15.7 1.59 0.78 1.28 63.4 

SD 10.6 4.15 7.30 2.91 187 4.95 9.48 18.9 7.53 110 3.87 2.22 5.82 375 

Note: -, data not available. WCUG, Western Canada and USA; ACG, Arctic Canada; GIS, Greenland ice sheet; AEG, Arctic Europe; NAG, North Asia; CEG, Central 

Europe; SCAG, South and Central Asia; AIS, Antarctic and Subantarctic ice sheet. PFBA, perfluorobutanoic acid; PFPeA, perfluoropentanoic acid; PFHxA, 

perfluorohexanoic acid; PFHpA, perfluoroheptanoic acid; PFOA, perfluoro-octanoic acid; PFNA, perfluorononanoic acid; PFDA, perfluorodecanoic acid; PFUdA, 

perfluoroundecanoic acid; PFDoA, perfluorododecanoic acid; PFTrDA, perfluorotridecanoic acid; PFBS, perfluorobutane sulfonic acid; PFHxS, perfluorohexane 

sulfonic acid; and PFOS, perfluoro-octane sulfonic acid.
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Table S6. Release fluxes (kg year−1) of individual and total perfluoroalkyl acids (PFAAs) from the eight global glacial regions via the water-soluble 

phase and suspended particles. 

Glacial 

regions 
Type Data 

PFBA 

(C4) 

PFPeA 

(C5) 

PFHxA 

(C6) 

PFHpA 

(C7) 

PFOA 

(C8) 

PFNA 

(C9) 

PFDA 

(C10) 

PFUdA 

(C11) 

PFDoA 

(C12) 

PFTrDA 

(C13) 

PFBS 

(C4) 

PFHxS 

(C6) 

PFOS 

(C8) 

Short-

chain 

Long-

chain 
∑12PFAAs ∑13PFAAs 

WCUG 

Water 
Average 0.14  2.41  4.85  1.39  162  125  30.4  19.8  0.86  0.93  0.40  7.61  24.2  16.4  363  380  380  

SD 0.00  0.09  0.25  0.04  3.87  2.18  0.55  0.56  0.02  0.03  0.02  0.41  0.53  0.80  7.74  8.56  8.56  

Particle 
Average 0.00  0.05  0.14  0.02  12.0  6.29  4.98  14.2  0.48  2.59  0.11  2.12  3.11  2.34  43.7  46.2  46.2  

SD 0.00  0.01  0.02  0.00  1.44  0.71  0.49  2.18  0.06  0.35  0.01  0.39  0.34  0.43  5.57  6.01  6.01  

AGC 

Water 
Average 286  42.9  51.7  79.4  106  75.8  15.4  9.94  2.81  0.89  3.46  0.96  9.11  461  219  398 684  

SD 18.4  4.20  3.84  5.63  6.60  4.63  1.16  0.81  0.26  0.07  0.40  0.10  0.61  32.2  14.1  28.3  46.7  

Particle 
Average 1.20  0.43  0.89  0.86  4.53  2.24  0.74  1.51  0.20  0.33  0.57  0.12  0.57  3.50  10.1  13.0  14.2  

SD 0.10  0.05  0.08  0.08  0.36  0.18  0.08  0.14  0.03  0.03  0.08  0.02  0.04  0.33  0.86  1.18  1.28  

GIS 

Water 
Average - 6.44  32.4  17.3  26.4  19.7  1.01  2.52  0.91  1.34  20.7  5.18  19.3  61.4  71.3  153  153 

SD - 0.50  1.68  0.91  1.42  1.04  0.05  0.13  0.08  0.11  1.08  0.41  1.01  3.51  3.84  8.43  8.43  

Particle 
Average - 1.15  6.96  2.36  14.3  6.38  1.48  13.3  3.11  21.6  61.7  7.90  22.0  18.4  82.1  162 162  

SD - 0.61  2.44  1.00  7.99  2.29  1.07  8.33  1.49  11.0  130  2.74  12.5  6.79  44.7  181 181  

AEG 

Water 
Average 114  19.6  40.9  24.8  45.7  34.1  20.1  10.6  5.30  0.10  82.9  68.5  53.0  268  169  406  520  

SD 1.75  0.43  1.12  0.68  1.08  1.51  1.26  0.66  0.23  0.00  3.79  3.81  1.75  7.79  6.51  16.3  18.1  

Particle 
Average 0.82  0.37  1.54  0.76  3.49  3.53  1.36  1.99  0.66  0.08  9.82  15.4  4.39  18.9  15.5  43.4  44.2  

SD 0.07  0.03  0.24  0.20  0.35  0.59  0.17  0.24  0.07  0.01  1.40  3.54  0.38  4.09  1.81  7.23  7.30  

NAG 

Water 
Average 1.66  0.12  0.43  0.29  1.57  1.14  0.78  0.45  0.34  0.33  0.58  0.18  1.21  2.69  5.83  7.44  9.10  

SD 0.11  0.01  0.02  0.01  0.04  0.04  0.02  0.01  0.02  0.03  0.08  0.01  0.08  0.15  0.24  0.36  0.47  

Particle 
Average 0.05  0.01  0.02  0.01  0.16  0.08  0.15  0.25  0.09  0.32  0.24  0.07  0.19  0.16  1.25  1.60  1.65  

SD 0.01  0.00  0.00  0.00  0.03  0.01  0.02  0.04  0.01  0.13  0.16  0.01  0.03  0.03  0.28  0.46  0.47  

CEG 
Water 

Average 9.36  0.33  0.76  0.88  3.02  1.26  0.68  0.49  0.38  0.40  - - 0.80  11.3  7.03  9.00  18.4  

SD 0.13  0.01  0.01  0.02  0.02  0.03  0.02  0.01  0.01  0.01  - - 0.02  0.17  0.11  0.15  0.28  

Particle Average 0.15  0.02  0.06  0.04  0.61  0.16  0.13  0.32  0.13  0.74  - - 0.24  0.27  2.33  2.45  2.60  
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Glacial 

regions 
Type Data 

PFBA 

(C4) 

PFPeA 

(C5) 

PFHxA 

(C6) 

PFHpA 

(C7) 

PFOA 

(C8) 

PFNA 

(C9) 

PFDA 

(C10) 

PFUdA 

(C11) 

PFDoA 

(C12) 

PFTrDA 

(C13) 

PFBS 

(C4) 

PFHxS 

(C6) 

PFOS 

(C8) 

Short-

chain 

Long-

chain 
∑12PFAAs ∑13PFAAs 

SD 0.00  0.00  0.00  0.00  0.01  0.01  0.00  0.01  0.00  0.02  - - 0.01  0.01  0.07  0.08  0.08  

SCAG 

Water 
Average 829  54.4  41.7  35.6  67.2  25.1  15.6  7.36  2.52  1.12  56.9  7.54  99.2  968  218  414  1243  

SD 45.6  0.95  2.17  1.00  3.48  0.90  0.79  0.47  0.09  0.04  1.74  0.30  16.2  50.0  21.9  28.1  73.7  

Particle 
Average 28.8  3.41  3.70  1.91  12.1  2.96  6.13  11.4  3.01  6.09  31.9  5.58  33.7  43.4  75.3  122  151  

SD 1.70  0.08  0.26  0.07  0.76  0.12  0.40  0.79  0.13  0.26  1.28  0.25  6.51  2.36  8.98  10.9  12.6  

AIS 

Water 
Average 25.2  1.77  5.47  1.29  67.2  1.20  1.74  0.97  0.53  2.39  0.39  0.31  0.97  34.0  75.0  84.2  109  

SD 1.66  0.07  0.26  0.08  6.29  0.09  0.13  0.06  0.05  0.15  0.01  0.02  0.12  2.08  6.88  7.31  8.97  

Particle 
Average 0.09  0.03  0.11  0.01  4.07  0.05  0.15  0.34  0.13  3.12  0.02  0.04  0.04  0.27  7.89  8.10  8.19  

SD 0.01  0.00  0.01  0.00  0.62  0.00  0.02  0.04  0.02  0.36  0.00  0.01  0.01  0.03  1.07  1.09  1.10  

Total 

Water 
Average 1265  128  178  161  479  283  85.7  52.1  13.7  7.52  165  90.3  208  1823  1129  1852  3117  

SD 67.7  6.26  9.34  8.36  22.8  10.4  3.98  2.71  0.75  0.44  7.12  5.05  20.3  96.7  61.4  97.5  165  

Particle 
Average 31.1  5.46  13.4  5.98  51.2  21.7  15.1  43.3  7.81  34.9  104  31.3  64.2  87.2  238  399  430  

SD 1.90  0.78  3.06  1.36  11.6  3.92  2.25  11.8  1.81  12.2  133  6.96  19.8  14.1  63.3  208  210  

Note: WCUG, Western Canada and USA; ACG, Arctic Canada; GIS, Greenland ice sheet; AEG, Arctic Europe; NAG, North Asia; CEG, Central Europe; SCAG, South and Central Asia; AIS, 

Antarctic and Subantarctic ice sheet; PFBA, perfluorobutanoic acid; PFPeA, perfluoropentanoic acid; PFHxA, perfluorohexanoic acid; PFHpA, perfluoroheptanoic 

acid; PFOA, perfluoro-octanoic acid; PFNA, perfluorononanoic acid; PFDA, perfluorodecanoic acid; PFUdA, perfluoroundecanoic acid; PFDoA, perfluorododecanoic 

acid; PFTrDA, perfluorotridecanoic acid; PFBS, perfluorobutane sulfonic acid; PFHxS, perfluorohexane sulfonic acid; and PFOS, perfluoro-octane sulfonic acid. Short-

chain PFAAs include C<8 perfluoroalkyl carboxylic acids (PFCAs) and C4 PFBS, whereas long-chain PFAAs comprise C≥8 PFCAs, C6 PFHxS and C8 PFOS. 

Σ12PFAAs refers to the sum of 12 PFAA compounds, excluding PFBA.
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Table S7. The locations of concern with high PFAA levels in water in the Arctic and Tibetan 

Plateau 

Region Area Location °E °N 
PFAA concentration 

(pg/L) 

Buffer 

Zone 
Ref. 

Arctic 

(>60°N) 

Lake Hazen, 

Ellesmere 

Island 

— -72.54 80.88 

6512 

III 

19 

11202 20 

Northern 

Swedish glacier 

Pite älv 21.30 65.38 7410 III 

24 

Skellefte älv 20.77 64.74 7810 III 

Ume älv 

[Gubböle] 
19.94 64.09 58340 III 

Indalsälven 17.38 62.52 26400 III 

Delångersån 17.09 61.64 59220 III 

Gavleån 17.14 60.67 11168 III 

Dalälven 21.29 65.38 5146 II 

Torne älv 24.16 65.85 2151 I 

Råne älv 21.97 66.02 3830 I 

Öre älv 19.66 63.61 2107 I 

Ljusnan 17.08 61.21 2570 I 

Ny-Ålesund, 

Svalbard 

W-NA03 11.89 78.92 8400 III 

23 

W-NA05 11.92 78.92 7300 III 

W-NA06 11.94 78.92 8900 III 

W-NA07 11.92 78.92 9600 III 

W-NA08 11.90 78.92 7100 III 

W-NA15 11.86 78.92 6900 III 

W-LI01 13.77 78.05 4110 II 

W-NA04 11.85 78.93 3400 I 

Nansen Basin, 

Svalbard 
— 30.25 86.27 3151 I 25 

Longyearbyen, 

Svalbard 
— 15.85 78.66 2738 I 26 

South and 

Central 

Asia 

(SCAG) 

Khumbu glacier — 86.81  27.93  9363 III 32 

Rongbuk glacier — 
86.92  27.99  

5431  III 
This 

study 

Yulong, Baishui 

No. 1 glacier 
— 

100.20  27.11  
3968  II 33 

Zhadang glacier — 90.98  30.61  3087 I 6 

Ranwu — 96.79  29.44  2702  I 

33 

Urumqi No.1 

Glacier 
— 

86.81  43.11  
2335  I 

Laohugou 

No.12 Glacier 
— 

96.56  39.43  
2252  I 
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Jimayangzong 

Glacier 
— 

84.15  29.66  
2017  I 

Nianqin Glacier — 90.65  30.47  1883  I 

Pulan glacier — 81.18  30.37  1872  I 

Germu — 94.89  36.41  1815  I 

Note: Buffer zones I, II, and III are defined based on PFAA concentrations being higher than the regional 

average (~2000 pg/L) by 1 time, 2 times, and more than 3 times, respectively, representing impact zones of 

100 km, 200 km, and 300 km. 
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Table S8. The locations of concern with high PFAA levels in sediments in the Arctic 

Region Area Location °E °N 
PFAA concentration 

(pg/g) 

Buffer 

Zone 
Ref. 

Arctic 

(>60°N) 

Svalbard 

HF 1 79.83  11.86  12090 III 

46 SF 2 79.72  11.08  2310 II 

KN11 12.29  78.92  1830 I 

Arctic Europe 

P2002003 5.82  59.30  4400 III 

47 

R3105 28.95  80.50  4100 III 

R1887 22.13  80.17  3460 III 

R1878 22.15  80.09  3440 III 

P2002002 6.04  59.23  3000 II 

R1653 25.53  74.39  2950 II 

R431 16.75  71.86  2910 II 

R1661 26.11  74.15  2360 II 

P2002009 5.77  58.94  2320 II 

R1331 29.20  71.32  2280 II 

R422 16.91  72.04  2250 II 

R2924 26.95  81.41  1920 I 

R1312 29.91  70.86  1780 I 

R3004 16.11  80.40  1760 I 

R2770 27.16  75.12  1740 I 

R2596 9.34  64.52  1740 I 

R2183 8.41  64.28  1700 I 

R1466 34.30  73.21  1690 I 

R1872 22.25  80.04  1680 I 

P2102007 21.13  69.99  1670 I 

R3184 4.70  58.81  1670 I 

R2438 6.49  65.36  1660 I 

P2102015 21.33  70.06  1580 I 

R2242 10.43  66.83  1450 I 

R2338 9.08  65.72  1360 I 

P2102008 20.76  69.85  1330 I 

R223 16.33  69.26  1300 I 

R2276 10.18  65.68  1290 I 

P2005008 6.18  62.58  1290 I 

R2969 22.17  81.50  1240 I 

R498 25.84  72.10  1190 I 

P2102019 21.73  70.04  1080 I 

R2229 8.22  64.71  1060 I 
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Region Area Location °E °N 
PFAA concentration 

(pg/g) 

Buffer 

Zone 
Ref. 

P2002007 5.54  59.09  1030 I 

R1627 26.42  76.02  1020 I 

R2270 10.48  66.23  1000 I 

Arctic Canadian 

basins 
Lake B35 -94.95 64.02 1500 I 4 

Chukchi Sea 

C11 -167.04 67.67 2670 II 

48 

C04 -166.97 71.01 1570 I 

S23 -152.24 71.93 1450 I 

S25 -151.50 72.34 1360 I 

S26 -152.45 72.70 1230 I 

BB01 -176.52 61.29 1200 I 

S21 -153.28 71.62 1170 I 

NB01 -174.92 61.23 1110 I 

R09 -167.06 71.96 1060 I 

BB05 -174.67 62.54 1030 I 

B13 182.52  61.29  1730 I 
49 

C24 199.17  71.82  1540 I 

Note: Buffer zones I, II, and III are defined based on PFAA concentrations being higher than the regional 

average (~1000 pg/g) by 1 time, 2 times, and more than 3 times, respectively, representing impact zones of 

100 km, 200 km, and 300 km. 
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Table S9. Comparison of depositional fluxes (ng m−2 year−1) of PFAAs calculated by the GEOS-Chem model and firn/ice cores. 

Glacial region 

Depositional fluxes calculated by the GEOS-

Chem model50 
Depositional fluxes calculated by firn/ice cores 

Value Year Value Site Year Sample typeref. 

Arctic Canada 120–560 2013–2015 45.3–313 Devon ice cap 2013–2015 Ice core17 

Central Europe 1600 2013–2015 
1091 Colle Gnifetti, Alps 2003–2007 Firn core30 

1860 Mt Ortles, Alps 2009 Firn core31 

South and Central Asia 1550–2100 2013–2015 
588 Mt Muztagata 1999 

Snow core6 
420 Mt Zuoqiupu 2006 

Antarctic and Subantarctic ice 

sheet 
2.1–16 2013–2015 30.7* 

Kohnen Research Station, 

Antarctica 
2013 Firn core51 

Note: * Value excludes perfluorobutanoic acid (PFBA).
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Table S10. Basic information about the seven glacial regions on the Tibetan Plateau. 

Glacial region 
Terminal altitude 

of glacier(m) 

Basin 

area 

(km2) 

Area of 

glacier 

(km2) 

Annual 

precipitation 

(mm) 

Annual 

evaporation 

(mm) 

Glacier type Influencing climate factors 

Rongbuk glacier ~5150 298 203 266 - Subcontinental 
Controlled by the south west Indian 

monsoon 

Zhadang glacier ~5500 58 1.9 415 1650 Subcontinental 
Controlled by the Indian monsoon 

in summer and westerlies in winter 

Korchung 

Gangri glacier 
~5500 ~34 ~2.9 390 2046 Subcontinental 

Controlled by the Indian monsoon 

in summer and westerlies in winter 

Qiangyong 

glacier 
~5000 - 7 388 2023 Subcontinental 

Controlled by the Indian monsoon 

in summer and westerlies in winter 

Rijie Cojia 

glacier 
~5300 - - 360 1981 Continental 

Influenced by the westerly southern 

branch and the Indian monsoon 

Galongla glacier 3880 - 2.7 
1697 (June–

September) 
- Temperate 

Mainly influenced by the Indian 

monsoon 

Parlung No. 4 

glacier 
4650 - 11.7 970 - Temperate 

Mainly influenced by the Indian 

monsoon 

Note: -, data not available.



46 

Table S11. Target analytes and internal standards used in this study. 

Analyte Formula Supplier Purity (%) Precursor ion [m/z] Product ion [m/z] Collision energy (V) 

PFBA C3F7COOH ABCR 99 212.9 168.7, 119.0 8, 15 

PFPeA C4F9COOH Alfa Aesar 98 262.8 218.9, 70.0 5, 13 

PFHxA C5F11COOH Fluka 97 312.9 268.8, 119.0 5, 15 

PFHpA C6F13COOH Lancaster Synthesis 98 362.9 318.9, 169.0 9, 16 

PFOA C7F15COOH Lancaster Synthesis 95 412.9 368.9, 169.0 8, 19 

PFNA C8F17COOH Lancaster Synthesis 97 462.9 418.9, 219.0 10, 18 

PFDA C9F19COOH Lancaster Synthesis 97 512.9 469.0, 269.0 8, 17 

PFUdA C10F21COOH ABCR 96 562.9 519.0, 269.0 8, 18 

PFDoA C11F23COOH Alfa Aesar 96 612.9 568.9, 269.0 10, 20 

PFTrDA C12F25COOH Wellington Laboratories >98 663.1 618.9, 169.0 11, 35 

PFBS C4F9SO2O- Fluka 97 298.9 79.8, 99.0 33,31 

PFHxS C6F13SO2O- Fluka 98 398.9 79.8, 99.0 38, 35 

PFOS C8F17SO2O- Wellington Laboratories >98 498.9 79.7, 99.0 48, 43 

[13C4]-PFBA [2,3,4-13C3]F7
13COOH Wellington Laboratories >98 216.8 171.8 8 

[13C2]-PFHxA C4F9[2-13C]F2
13COOH Wellington Laboratories >98 314.9 269.9, 119.0 10, 15 

[13C4]-PFOA C4F9[2,3,4-13C3]F6
13COOH Wellington Laboratories >98 416.9 371.8, 169.0 7, 15 
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Analyte Formula Supplier Purity (%) Precursor ion [m/z] Product ion [m/z] Collision energy (V) 

[13C5]-PFNA C4F9[2,3,4,5-13C4]F8
13COOH Wellington Laboratories >98 467.9 423.0, 219.0 10, 16 

[13C2]-PFDA C8F17
13CF2

13COOH Wellington Laboratories >98 514.9 469.8, 269.0 15, 17 

[13C2]-PFUdA C9F19
13CF2

13COOH Wellington Laboratories >98 564.9 519.8 269.0 10, 18 

[13C4]-PFOS C4F9[1,2,3,4-13C4]F8SO2O- Wellington Laboratories >98 502.9 79.5, 99.0 49,41 

Note: product ions in bold font were used for quantification.
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Table S12. Instrumental limits of detection (iLOD) and quantification (iLOQ), average blank levels, and method quantification limits (MQL) for 

water (pg L−1). and suspended particle (pg g−1) samples. 

Analyte 
iLOD 

(S/N=3) 

iLOQ 

(S/N=10) 

Mean procedural 

blanks of water 

samples 

MQL for 

water samples 

Mean field blanks 

of water samples 

Mean procedural 

blanks of 

suspended particle 

samples 

MQL of suspended 

particle samples 

Mean field 

blanks of 

suspended 

particle samples 

PFBA 0.3 4.2 0.9±0.7 3.0 12.1±1.6 3.2±1.4 10.6 11.81.7 

PFPeA 0.2 9.4 0.5±0.4 1.5 1.1±0.3 0.8±0.6 3.2 3.80.7 

PFHxA 0.3 3.2 0.6±0.2 1.2 1.2±0.4 1.0±0.2 1.6 2.00.6 

PFHpA 0.2 5.7 0.7±0.4 2.0 1.3±0.4 0.5±0.4 1.7 0.80.4 

PFOA 0.2 4.2 0.6±0.3 1.4 0.4±0.1 1.0±0.1 1.3 1.40.5 

PFNA 0.1 5.7 0.5±0.3 1.5 1.3±0.2 1.0±0.1 1.3 2.61.4 

PFDA 0.3 2.6 0.6±0.2 1.2 1.6±0.2 0.8±0.1 1.1 1.40.8 

PFUdA 0.2 4.6 0.6±0.3 1.5 0.3±0.1 0.9±0.3 1.8 2.81.6 

PFDoA 0.5 7.9 0.5±0.4 1.7 1.4±0.2 1.2±0.5 2.7 2.41.0 

PFTrDA 0.1 1.0 1.1±0.1 1.4 0.9±0.7 0.8±0.5 2.3 1.60.8 

PFBS 0.1 1.7 0.2±0.1 0.5 0.8±0.2 1.3±0.6 3.1 8.01.9 

PFHxS 0.3 1.5 0.9±0.5 2.4 10.7±0.2 0.7±0.3 1.6 2.61.4 

PFOS 0.1 4.3 0.2±0.1 0.6 0.2±0.1 1.8±0.5 3.2 9.41.9 

Note: PFBA, perfluorobutanoic acid; PFPeA, perfluoropentanoic acid; PFHxA, perfluorohexanoic acid; PFHpA, perfluoroheptanoic acid; PFOA, perfluoro-octanoic 

acid; PFNA, perfluorononanoic acid; PFDA, perfluorodecanoic acid; PFUdA, perfluoroundecanoic acid; PFDoA, perfluorododecanoic acid; PFTrDA, 

perfluorotridecanoic acid; PFBS, perfluorobutane sulfonic acid; PFHxS, perfluorohexane sulfonic acid; and PFOS, perfluoro-octane sulfonic acid. 
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Table S13. Statistical recoveries for water and suspended particle samples. 

Mass labeled compounds 

Water (%) Suspended particles (%) 

Min. Max. Mean SD Min. Max. Mean SD 

[13C4]-PFBA 40 90 52 24 44 108 70 15 

[13C2]-PFHxA 41 99 65 23 31 86 57 14 

[13C4]-PFOA 37 106 72 22 25 85 51 15 

[13C4]-PFOS 47 96 72 21 34 79 55 9 

[13C5]-PFNA 34 121 70 21 28 80 50 13 

[13C2]-PFDA 42 125 81 30 20 73 43 13 

[13C2]-PFUdA 32 115 70 25 66 66 42 13 

Note: Prior to extraction, samples were spiked with 2,000 pg of a recovery standard mix. The recoveries of 

each mass labeled compounds in different samples were assessed by comparing the peak areas to their initial 

values. [13C4]-PFBA, perfluoro-n-[1,2,3,4-13C4] butanoic acid; [13C2]-PFHxA, perfluoro-n-[1,2-13C2] 

hexanoic acid; [13C4]-PFOA, perfluoro-n-[1,2,3,4-13C4] octanoic acid; [13C4]-PFOS, perfluoro-1-[1,2,3,4-

13C4] octane sulfonate; [13C5]-PFNA, perfluoro-n-[1,2,3,4,5-13C5] nonanoic acid; [13C2]-PFDA, perfluoro-n-

[1,2-13C2] decanoic acid; [13C2]-PFUdA, perfluoro-n-[1,2-13C2] undecanoic acid. 
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Table S14. Correlation analysis between logKd and the influencing factors in glacial runoffs on 

the Tibetan Plateau. 

Analyte pH 
Water temperature 

(Tw) (C) 

Particulate organic carbon 

(POC) (%) 

Conductivity 

(σ) (s cm−1) 

Dissolved oxygen 

(DO) (mg L−1) 

PFBA 0.311 0.498 0.692** −0.017 −0.287 

PFPeA 0.200 0.183 0.411* −0.365 −0.036 

PFHxA 0.363 0.239 0.523** −0.361 −0.052 

PFHpA 0.410 −0.082 0.453* 0.051 0.034 

PFOA 0.184 0.033 0.245 −0.159 0.001 

PFNA 0.290 0.157 0.428* −0.052 −0.099 

PFDA 0.470 −0.242 0.267 −0.218 0.109 

PFUdA 0.085 −0.079 0.197 −0.296 −0.016 

PFDoA −0.472 0.214 0.240 −0.607 −0.034 

PFTrDA −0.872 −0.331 0.024 −0.381 0.443 

PFBS 0.502 0.736** 0.577** 0.541 0.298 

PFHxS −0.086 −0.093 0.214 −0.313 0.344 

PFOS 0.436 −0.405 0.109 −0.174 0.146 

Note: ** p <0.01; * p <0.05; PFBA, perfluorobutanoic acid; PFPeA, perfluoropentanoic acid; PFHxA, 

perfluorohexanoic acid; PFHpA, perfluoroheptanoic acid; PFOA, perfluoro-octanoic acid; PFNA, 

perfluorononanoic acid; PFDA, perfluorodecanoic acid; PFUdA, perfluoroundecanoic acid; PFDoA, 

perfluorododecanoic acid; PFTrDA, perfluorotridecanoic acid; PFBS, perfluorobutane sulfonic acid; PFHxS, 

perfluorohexane sulfonic acid; and PFOS, perfluoro-octane sulfonic acid.
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Supplemental Figures 

 

Figure S1. Dissolved and particle-bound perfluoroalkyl acids (PFAAs) in glacial runoff from 

upstream to downstream sites. 

Note: The seven glacial regions are: RB, the Rongbuk glacier; KG, the Korchung Gangri glacier; ZD, the 

Zhadang glacier; GL, the Galongla glacier; PL, the Parlung No. 4 glacier; QY, the Qiangyong glacier; and 

RC, the Rijie Cojia glacier. U, M, and D represent the upstream, midstream, and downstream sampling sites, 

respectively. The ordinate represents the ratio of the PFAA concentration at each sampling site to the original 

concentration upstream. Pink represents an increasing trend from upstream to downstream, whereas dark 

green represents a decreasing trend. A null box (missing values) in QY indicates that the concentration of the 

individual PFAA in meltwater or suspended particles is below the limit of detection.
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Figure S2. Annual release fluxes (kg year−1) of PFAAs from glaciers in eight glacial regions via the water-soluble phase in 2020-2100 under three 

climate change scenarios (SSP126-blue line, SSP 245-bright blue line and SSP 585-red line). 

Note: The solid line presents the average value with a window of one year and the shaded area indicates the range of minimum and maximum values. WCUG, West 

Canada and USA; ACG, Arctic Canada; GIS, the Greenland ice sheet; AEG, Arctic Europe; NAG, North Asia; CEG, Central Europe; SCAG, South and Central Asia; 

and AIS, the Antarctic and Subantarctic ice sheet. 
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Figure S3. Annual release fluxes (kg year−1) of PFAAs from glaciers in eight glacial regions via the suspended particles in 2020-2100 under three 

climate change scenarios (SSP126-blue line, SSP 245-bright blue line and SSP 585-red line). 

Note: The solid line presents the average value with a window of one year and the shaded area indicates the range of minimum and maximum values. WCUG, West 

Canada and USA; ACG, Arctic Canada; GIS, the Greenland ice sheet; AEG, Arctic Europe; NAG, North Asia; CEG, Central Europe; SCAG, South and Central Asia; 

and AIS, the Antarctic and Subantarctic ice sheet.
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Figure S4. Projected changes in cumulative adverse effects on top predator wildlife and PFAA 

concentrations in polar bear for the period from 1970-2020 (past to present) and 2020-2100 

(near future to future). 

Note: The upper part is modified from the AMAP Assessment 2020 (available at AMAP Assessment 2020: 

POPs and Chemicals of Emerging Arctic Concern: Influence of Climate Change | AMAP)

https://www.amap.no/documents/doc/amap-assessment-2020-pops-and-chemicals-of-emerging-arctic-concern-influence-of-climate-change/3580
https://www.amap.no/documents/doc/amap-assessment-2020-pops-and-chemicals-of-emerging-arctic-concern-influence-of-climate-change/3580
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Figure S5. The correlations of logKow-ionic and logKd for individual PFAAs measured in 

meltwater on the Tibetan Plateau. 

Note: PFBA, perfluorobutanoic acid; PFPeA, perfluoropentanoic acid; PFHxA, perfluorohexanoic acid; 

PFHpA, perfluoroheptanoic acid; PFOA, perfluoro-octanoic acid; PFNA, perfluorononanoic acid; PFDA, 

perfluorodecanoic acid; PFUdA, perfluoroundecanoic acid; PFDoA, perfluorododecanoic acid; PFTrDA, 

perfluorotridecanoic acid; PFBS, perfluorobutane sulfonic acid; PFHxS, perfluorohexane sulfonic acid; and 

PFOS, perfluoro-octane sulfonic acid.
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Figure S6. Annual air temperature in three scenarios from the 14 CMIP6 datasets for the eight 

glacial regions studied. 

Note: WCUG, Western Canada and USA; ACG, Arctic Canada; GIS, Greenland ice sheet; AEG, Arctic 

Europe; NAG, North Asia; CEG, Central Europe; SCAG, South and Central Asia; AIS, Antarctic and 

Subantarctic ice sheet. 
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Figure S7. Annual precipitation in three scenarios from the 14 CMIP6 datasets for the eight 

glacial regions studied. 

Note: WCUG, Western Canada and USA; ACG, Arctic Canada; GIS, Greenland ice sheet; AEG, Arctic 

Europe; NAG, North Asia; CEG, Central Europe; SCAG, South and Central Asia; AIS, Antarctic and 

Subantarctic ice sheet.  
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