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Risk assessment

There have been reports of potential health risks for people from hydrophobic organic pol-
lutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated hydrocarbons
(PCHs), and organophosphate flame retardants (OPFRs). When a contaminated site is used
for residential housing or public utility and recreation areas, the soil-bound organic pollu-
tants might pose a threat to human health. In this study, we investigated the contamination
profiles and potential risks to human health of 15 PAHs, 6 PCHs, and 12 OPFRs in soils from
four contaminated sites in China. We used an in vitro method to determine the oral bioac-
cessibility of soil pollutants. Total PAHs were found at concentrations ranging from 26.4 ng/g
to 987 ng/g. PCHs (0.27-14.3 ng/g) and OPFRs (6.30-310 ng/g) were detected, but at low levels
compared to earlier reports. The levels of PAHs, PCHs, and OPFRs released from contami-
nated soils into simulated gastrointestinal fluids ranged from 1.74% to 91.0%, 2.51% to 39.6%,
and 1.37% to 96.9%, respectively. Based on both spiked and unspiked samples, we found that
the oral bioaccessibility of pollutants was correlated with their logK, and molecular weight,
and the total organic carbon content and pH of soils. PAHs in 13 out of 38 contaminated soil
samples posed potential high risks to children. When considering oral bioaccessibility, nine
soils still posed potential risks, while the risks in the remaining soils became negligible. The
contribution of this paper is that it corrects the health risk of soil-bound organic pollutants

by detecting bioaccessibility in actual soils from different contaminated sites.
© 2024 The Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences. Published by Elsevier B.V.
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Introduction

The manufacturing industries of textiles, printing, metallurgy,
and chemicals are all rapidly expanding with industrializa-
tion. In the course of the manufacturing process, numerous
chemicals are intentionally or unintentionally released into

E-mail: chenzhf@gdut.edu.cn (Z.-F. Chen). the surrounding environment, thereby impacting the health
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of both humans and organisms inhabiting the soil and water
(Arslan et al., 2017; Chen et al., 2022b, 2023; Jiang et al., 2023). It
has been reported that hydrophobic organic pollutants easily
bind to organic matter and can be found in contaminated soils
(Li et al., 2015). These soil pollutant residues, resulting from
human activities, pose potential risks to people living or work-
ing near contaminated sites (Alharbi et al., 2018; Tang et al.,
2010). Soil remediation is recommended because some persis-
tent organic pollutants degrade slowly in soils, so remediation
is required to make the land safe for human and animal use
(Xiang et al., 2022). Therefore, it is necessary to detect toxic
pollutant levels in contaminated soils.

As representative examples of traditional hydrophobic or-
ganic pollutants, 15 polycyclic aromatic hydrocarbons (PAHs)
were included on the United States Environmental Protection
Agency'’s the priority control list as early as 1976 due to their
carcinogenic, teratogenic, and mutagenic effects (Keith, 2015).
PAHs have been detected in contaminated soils in various
countries. Qi et al. (2020) demonstrated that PAH concentra-
tions in industrial soils in Caserta, Italy ranged from 10 ng/g
dry weight (dw) to 1491 ng/g dw. Higher soil contamination
of PAHs was found in Guizhou and Shenyang, China, as well
as Ulsan, South Korea, with concentrations of 196-11,592,
290-8492, and 65-12,000 ng/g dw, respectively (Chen et al,
2017; Kwon and Choi, 2014; Yang et al., 2013). A toxicological
study revealed that benzo[a]pyrene (BaP) reduces cell regen-
eration by upregulating receptors that inhibit stem cell prolif-
eration and differentiation (Heo et al., 2019). Additionally, BaP
causes DNA methylation, damages DNA integrity and its re-
pair process, leads to cell death and genome reordering, and
thereby increases the incidence of cancer (Sadikovic and Ro-
denhiser, 2006). The existence of PAHs presents potential risks
to human health. For example, the incremental lifetime can-
cer risk (ILCR) associated with PAHs exceeded the high poten-
tial risk range value for individuals exposed to soils within
industrial zones in two distinct cities in India (Sankar et al,,
2023).

In addition to PAHs, polychlorinated hydrocarbons (PCHs)
are hydrophobic organic pollutants that have gained in-
creasing attention. Hexachlorobutadiene (HCBD), pen-
tachloroanisole (PCA), hexachlorobenzene (HCB), and
pentachlorobenzene (PeCB) were added to the Stockholm
Convention’s list due to their persistence, bioaccumulation,
and toxicity (UNEP, 2001, 2009, 2015). Tetrachlorobenzenes
and trichlorobenzenes are regarded as priority pollutants by
European, American, and Canadian environmental organiza-
tions (CEPA, 1993; EU, 2013; US EPA, 2014). These pollutants
have been found in soils (Wang et al., 2007; Zhang et al,,
2014). Among them, chlorobenzenes have a high irritant
effect on the eyes, skin, and respiratory system and easily
react with liver and kidney tissues (Brahushi et al., 2017).
Organophosphate flame retardants (OPFRs), which are glob-
ally more frequently used, can effectively replace brominated
flame retardants (Wei et al., 2015). The majority of OPFRs are
typically incorporated into polymer materials through phys-
ical mixing instead of chemical bonding. This facilitates the
release of contaminants into the environment via processes
such as wear, volatilization, leaching, combustion, and waste
disposal (Li et al., 2014). As a result, OPFRs can be ubiqui-
tously detected in various environmental samples, including

dusts (Bacaloni et al., 2007; Marklund et al., 2003) and soils
(Mihajlovi¢ et al., 2011). The potential hazards of organophos-
phorus flame retardants, such as tris(2-chloroethyl) phos-
phate (TCEP), tris(2-chloropropyl) phosphate (TCPP), and
tris(2,3-dichloropropyl) phosphate (TDCPP), to ecosystems
and human health have been reported (Du et al., 2019;
Yu et al., 2019).

Risk evaluation and site soil remediation typically rely on
the total content of pollutants in soils across different coun-
tries. This approach assumes that soil pollutants are com-
pletely absorbed by humans after ingestion, inhalation, or epi-
dermal penetration. However, due to the binding of organic
compounds to soils, this assumption does not reflect real-
ity and may overestimate risk levels (UKEA, 2002). To address
this issue, the terms bioaccessibility and bioavailability are
used. Bioavailability refers to the percentage of a chemical that
reaches the systemic circulation in the body, while bioacces-
sibility is the ratio of a chemical’s soluble portion that can
be released from the environmental matrix into the gastroin-
testinal system (Collins et al., 2015; Ruby et al., 1999). Bioavail-
ability is determined through in vivo experiments (Ruby et al.,
2016), but these are unsuitable for analyzing batch samples.
Conversely, analyzing bioaccessibility through in vitro experi-
ments is suitable for processing a substantial number of sam-
ples owning to their expeditious and straightforward charac-
teristics (Oomen et al., 2002). Numerous previously published
papers have claimed that the standard solution was added
to soils when measuring bioaccessibility. Furthermore, the
physicochemical properties of environmental matrices (e.g.,
soil particle size and total organic carbon content) and target
pollutants (e.g., logKow, molecular weight, and water solubil-
ity) have been reported to affect the oral bioaccessibility of tar-
get pollutants based on matrix spiking with a standard solu-
tion (Yu et al., 2013). However, these results do not provide a
reliable indicator of the actual situation.

Assessing the oral bioaccessibility of soil organic pollu-
tants, a primary pathway for human exposure, is crucial. This
evaluation should be conducted in soils without the use of
commercial standard solutions. The study aims to: 1) char-
acterize contamination profiles of PAHs, PCHs, and OPFRs in
soils from four typical contaminated sites in China; 2) deter-
mine the release of target pollutants from soils into simulated
gastrointestinal fluids using a physiologically based extrac-
tion test (PBET), without the addition of standard solutions;
3) explore the correlation between the bioaccessibility of tar-
get pollutants and the physicochemical properties of contami-
nated soils and pollutants; 4) validate this correlation by intro-
ducing spiked samples with added standard solutions to soils;
and 5) assess human health risks posed by the oral ingestion
of toxic pollutants in soils, before and after oral bioaccessibil-
ity correction. This information underscores the importance
of correcting oral bioaccessibility during risk assessment.

1. Materials and methods
1.1. Soil sampling

Thirty-eight soil samples were collected from four contami-
nated sites, including a copper-zinc smelting plant (BY, n = 6),
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an antimony mining plant (QL, n = 12), a petrochemical plant
(DQ, n = 12), and an ink factory (ZS, n = 8) (Appendix A Ta-
ble S1 and Fig. S1). The BY and QL sites represent industries
related to heavy metal production, while the DQ and ZS sites
represent industries involved in the manufacturing of organic
chemicals. Worker living areas are present within the BY site,
whereas the QL site is abandoned. Within 800 m of the DQ site,
there are residential areas and two middle schools. The ZS site
is located near a river and features a mixed industrial and res-
idential area, with a developed furniture industry. It is essen-
tial to conduct a human health risk assessment for these four
contaminated sites. Three subsamples within a 1.0-m diame-
ter (0-20 cm depth) were thoroughly mixed to generate com-
posite soil samples for each sampling site. To remove debris
and pebbles, all soils were air dried, ground at room tempera-
ture, and sieved through a 10-mesh screen (Sankar et al., 2023).
Soil samples were then further sieved to less than 250 pm for
physical and chemical analysis of soil properties (such as pH
and total organic carbon) (Xie et al,, 2023) (Appendix A Text
S1), determination of target pollutants, and in vitro bioacces-
sibility tests.

1.2. In vitro bioaccessibility assays

Simulated gastric and intestinal fluids were prepared using
an improved physiologically based extraction test (PBET). This
test closely mimics gastrointestinal conditions under fasting
states and has been widely employed to simulate the leach-
ing of organic contaminants in various matrices (Juhasz et al.,
2009; Wang et al., 2013). The simulated gastrointestinal fluid
was freshly prepared with ultrapure water to avoid contam-
ination caused by bacteria. The PBET comprises gastric and
intestinal phases, with the gastric phase set to 1 hr and the
intestinal phase to 4 hr, aligning with the retention times of
the digestive tract (Cui et al.,, 2016). The pH value of the gas-
tric fluid is 1.5, which represents the fasting state (Cui et al,,
2016). Based on previous works (Juhasz et al., 2009; Wang et al.,
2013), 2 g of soils were added to 200 mL of simulated gastric
fluid (pH = 1.5) containing 1.76 g of sodium chloride, 0.1 g of
trisodium citrate dihydrate, 84 pL of DL-malic acid disodium
salt, 100 pL of acetic acid, and 0.25 g of pepsin. The tempera-
ture, solid/liquid ratio, and incubation time were set at 37°C,
1:100, and 60 min, respectively, to simulate the gastric diges-
tion process. After the gastric digestion process, the solution
pH was adjusted to 7.0, and 0.4 g of pig bile and 0.12 g of
pancreatin were added. The resulting solution underwent a
4 hr incubation period at an oscillator speed of 100 r/min to
simulate the intestinal digestion process. The incubation flask
was filled with nitrogen throughout the process. After incuba-
tion, the final mixtures were divided into three aliquots, cen-
trifuged at 2500 r/min for 10 min, and the supernatant was
collected for chemical analysis. It should be noted that four
soils, namely DQ8, QL9, BY6, and ZS1, from different contam-
inated sites were spiked with a standard solution of PAHs,
PCHs, and OPFRs at concentrations of 250, 25, and 250 ng/g,
respectively. These soils were also used for in vitro oral bioac-
cessibility tests to compare the results obtained from soils
without the addition of a standard solution. All experiments
were performed in triplicate. The oral bioaccessibility (fgac, %)

of each target pollutant was calculated using Eq. (1):
fBac = Cgi/csoﬂ x 100% 1)

where, Cg; (ng/g) and Cgo (ng/g) represent the concentration
of a target pollutant in the simulated gastrointestinal fluids
after incubation and in soils, respectively.

1.3. Sample pretreatment and GC-MS/MS analysis

Fifteen PAHs, six PCHs, and 12 OPFRs were selected as target
analytes in this study. Information on the target analytes and
suppliers of chemicals and reagents is provided in Appendix A
Text S2 and Table S2. Soil samples were pretreated using accel-
erated solvent extraction and column clean-up, as described
in previous studies (Dong et al., 2021; Xu et al., 2022). Detailed
pretreatment procedures are provided in Appendix A Text S3.
For samples of simulated gastrointestinal fluid, the fluid was
mixed with 30 mL of dichloromethane: n-hexane (V: V = 3:1)
after being spiked with 0.5 ng/g of surrogate standards. The
pear-shaped flask containing the fluid and solvent was shaken
vigorously for 1 min and left to stand for 5 min, after which the
organic phase was collected in a new flat-bottomed flask. The
extraction process was repeated three times. To remove water,
5 g of anhydrous sodium sulfate was added to the combined
organic phase. After manually shaking the extracts, they were
transferred to another flat-bottomed flask and concentrated
to a volume of approximately 1 mL using a rotary evaporator.
The final extracts underwent a purification procedure using a
commercial florisil cartridge, identical to the soil samples.
The target compounds were determined using a Thermo
TRACE™ 1300 gas chromatograph coupled to a TSQ 8000 Evo
mass spectrometer (Waltham, USA). A Thermo TG-5MS cap-
illary column (30m x 0.25 mm i.d., 0.25 pm film thickness)
was used for the chromatographic separation of the target an-
alytes. Quantitative analysis was performed using the selected
reaction monitoring mode. The optimized instrument operat-
ing parameters are presented in Appendix A Tables S3-54.

1.4.  Quality control

Unlike the simulated gastrointestinal fluid samples, which
were spiked with a mixed standard solution containing
0.5 ng/g of each analyte, soil samples were spiked with a
mixed standard solution containing 2.5 ng/g of each ana-
lyte for recovery tests. Each test was conducted in tripli-
cate. Depending on the spiked samples, the method detec-
tion or quantitation limit (MDL or MQL) of each analyte was
determined to be three or ten times the signal-to-noise ra-
tio (S/N). The recoveries, MDLs, and MQLs of all target com-
pounds in soils were 63.4%-113%, 0.16-21.5 pg/g, and 0.53-
71.6 pg/g, while those of the simulated gastrointestinal flu-
ids were 61.4%-119%,0.05-52.2 pg/g, and 1.74-174 pg/g, respec-
tively (Appendix A Table S5). For quality control, all sample
runs included the evaluation of a standard solution, a solvent
blank, and an extraction procedure blank. The findings indi-
cate that the method employed in this study is sensitive and
effective in determining the target analytes in soil and simu-
lated gastrointestinal fluid samples.
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1.5. Health risk assessment

To determine the amount of PAHs present in the soil of
the study site, the current toxicity assessment method for
PAHSs primarily uses the toxic equivalence factor (TEF), which
is based on the equivalent toxicity concentration of BaP
(Gao et al., 2019). Based on the routes of oral, nasal, and der-
mal ingestion of soils (Cao et al., 2017), the ILCR of PAHs in con-
taminated sites was used for cancer risk assessment (US EPA,
2005). In addition, daily intake (DI) (US EPA, 2017) and hazard
quotient (HQ) (Boonsaner and Hawker, 2013; Zhao et al., 2015)
calculations were used to determine the human health risk
assessments for PCHs and OPFRs. The oral bioaccessibility of
PAHs, PCHs, and OPFRs in soils was introduced to correct the
risk assessment. Detailed calculation methods are presented
in Appendix A Text S4. When ILCR < 10-°, the risk is negligi-
ble under the supervision of most regulations. ILCR between
10~% and 10~* indicates a potential risk, while ILCR > 10~% in-
dicates a potentially high risk (Ali et al., 2017). HQ <1 and HQ
> 1 indicate low and high risk, respectively (Boonsaner and
Hawker, 2013; Zhao et al., 2015).

1.6.  Data analysis

Before the statistical analysis, the concentration values below
the MDL were set to 0, and concentration values below the
MQL but above the MDL were given a value equal to half of
the corresponding MQL. The isomer ratios of Ant/(Phe + Ant),
BaA/(BaA + Chr), F1t/(Flt + Pyr), and IcdP/(IcdP + BghiP) were
commonly used to distinguish between petrogenic and py-
rolytic sources and determine the sources of PAH pollution in
the soils of the four contaminated sites (Kurwadkar et al., 2023;
Pies et al., 2008).

2. Results and discussion

2.1. Contamination levels of PAHs, PCHs, and OPFRs in
contaminated soils

Hydrophobic organic contaminants are commonly found in
contaminated soils (Adeyinka et al., 2022; Lei et al., 2020;
Li et al., 2022). In this study, PAHs, PCHs, and OPFRs were
detected in all four contaminated sampling sites. The total
concentrations ranged from 26.4-987 ng/g, 0.27-14.3 ng/g, and
6.30-310 ng/g, respectively, with mean detection frequencies
of 97.9%, 80.7%, and 89.0%. The mean concentrations of PAHs
in the sampling sites of copper-zinc smelting (BY), antimony
mining (QL), petrochemical (DQ), and ink factory (ZS) were 276,
353, 266, and 88.6 ng/g dry weight (dw), respectively (Appendix
A Table S6). The contributions of seven carcinogenic PAHs
(£7-carPAHSs) accounted for 33.1% (BY), 70.5% (QL), 73.3% (DQ),
and 43.6% (ZS) of the total PAHs. Among the sampling sites, QL
soils had the highest contribution of £;_c,,PAHs (Appendix A
Fig. S2). The PAH contents investigated in this study were ap-
proximately one order of magnitude lower compared to those
documented in heavy industrial zones in Ulsan, Korea (mean
value = 960 ng/g) (Kwon and Choi, 2014) and Shenyang, China
(mean value = 2989 ng/g) (Yang et al., 2013). Furthermore, they

were notably lower than PAH levels reported in urban soils
from Orlando, USA (mean value = 3227 ng/g) (Liu et al., 2019).
The concentrations of PAHs in BY, DQ, and QL soils were higher
than those in agricultural soils from Huanghuai Plain, China
(mean value = 130 ng/g) (Yang et al.,, 2012) and Nanjing, China
(mean value = 178 ng/g) (Yin et al., 2008), urban and rural soils
from Hong Kong, China (mean value = 54.6 ng/g) (Zhang et al.,,
2006), and industrial areas and production sites from Caserta,
Italy (mean value = 137 ng/g) (Qi et al., 2020). The main source
of PAH pollution in contaminated soils is believed to be the
incomplete combustion of petroleum fuel during the produc-
tion process (Ambade and Sankar, 2021; Ambade et al., 2022;
Han et al.,, 2019). Nap content accounted for 26.4% of £15PAHs,
establishing it as a significant contributor to the overall PAH
composition (Appendix A Fig. S2). This result can be ex-
plained by the generation of Nap from unburned oil, oil leak-
age, and insufficient ignition of organic matter (Zhang et al,,
2020). The PAH residues in ZS soils were similar to those
found in agricultural soils (Yang et al., 2012; Yin et al., 2008),
possibly due to the primary use of aromatic hydrocarbon
solvents instead of petroleum fuels in printing ink (Jaen et al.,
2022).

To identify the pollution sources of PAHs in the soils of the
four contaminated sampling sites, we calculated the isomer
ratios of Ant/(Phe + Ant), BaA/(BaA + Chr), FIt/(Flt + Pyr), and
IcdP/(IcdP + BghiP) (Kurwadkar et al., 2023; Pies et al., 2008).
Detailed information on the isomer ratios of PAHs correspond-
ing to different sources in different contaminated sampling
sites is provide in Appendix A Table S7. The results indicated
that PAHs in BY, ZS, and DQ soils originated from combustion.
Specifically, PAHs in ZS soils came from petroleum combus-
tion, while those in DQ came from biomass and coal combus-
tion.

Apart from PAHs, the mean concentrations of PCHs in
the four contaminated sampling sites were 4.75, 0.70, 4.02,
and 2.13 ng/g dw for BY, QL, DQ, and ZS, respectively (Ap-
pendix A Table S8). These values were lower than those
found in sediment from the Tonghui River, China (X,7,CBs
mean value = 562.6 ng/g) (Zhou et al., 2009), vegetable plant-
ing soils from Hangzhou, China (mean value = 49 ng/g)
(Zhang et al., 2005), and field soils from Woburn, UK (mean
value = 7.65 ng/g) (Wang et al., 1995). These results indicate
low PCH pollution in the investigated zones. For OPFRs, they
were found in soils from the BY, QL, DQ, and ZS sampling sites,
with mean concentrations of 15.8, 47.3, 95.7, and 50.5 ng/g
dw, respectively (Appendix A Table S9). Soil OPFR residues
in this study were higher than those found in soils used
for growing vegetables in Chengdu, China (X,30PFRs mean
value = 21.4 ng/g) (Liao et al., 2020), similar to agricultural
soils from Hebei, China (mean value = 80 ng/g) (Wan et al,,
2016), but lower than those found in electronic waste recycling
sites in Vietnam (mean value = 196 ng/g) (Matsukami et al.,
2015). Except for electronic waste recycling sites, soil OPFR
pollution levels in the four contaminated sampling sites can
be considered moderate. Since OPFRs are often physically
added to products rather than chemically combined with
them, they can be released into the surrounding environment
through volatilization and wear during application (Wei et al.,
2015).
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Fig. 1 - Mean bioaccessibility of each target analyte in soils from copper-zinc smelting (BY), antimony mining (QL),

petrochemical (DQ), and ink factory (ZS).

2.2.  Invitro oral bioaccessibility of PAHs, PCHs, and
OPFRs

Fig. 1 illustrates the mean oral bioaccessibility of individ-
ual PAHs, PCHs, and OPFRs at each contaminated site. The
ranges of PAHs, PCHs, and OPFRs released from contami-
nated soils into simulated gastrointestinal fluids were 1.74%—
91.0%, 2.51%-39.6%, and 1.37%-96.9%, respectively. Nap (mean
value = 66.9%), TCB (mean value = 30.5%), and TDCPP (mean
value = 53.1%) exhibited the highest bioaccessibility capaci-
ties for PAHs, PCHs, and OPFRs, respectively, suggesting that
these three chemicals could readily enter the human body.

Soil is composed of various constituents. The interactions
of these components are directly impacted by the physical
properties, such as texture, structure, and porosity, as well as
the chemical properties like pH and ion exchange capacity
of the soil. These factors subsequently influence the bioac-
cessibility of organic pollutants within the soil (Shen et al,,
2019). As presented in Fig. 2a-b, a significant negative corre-
lation was observed between the total organic carbon (TOC)
content and the total oral bioaccessibility of PAHs in soils
(R? = 0.709, p < 0.0001), while a significant positive correla-
tion existed between soil pH and the total oral bioaccessibility
of PAHs (R? = 0.443, p = 0.025). Similar findings of a negative
correlation between TOC and the total oral bioaccessibility of
PAHs were observed in labeled soil samples (Lu et al., 2010).
PAHs, being lipophilic organic compounds, exhibit stronger
binding affinity to organic carbon compared to inorganic com-
pounds (Dean and Ma, 2007; Ghosh et al., 2000). Consequently,
the binding of PAHs to soils may hinder their release during
digestion, thereby affecting the percentage of PAHs dissolved
in the simulated gastric and intestinal fluids. Furthermore,
a negative correlation between TOC and the oral bioacces-
sibility of 2,3',4,4,5-pentachlorobiphenyl (PCB118) and non-
planar 2,2',5,5'-tetrachlorobiphenyl (PCB52) was observed in
spiked soils (Pu et al.,, 2006). The TOC content may be in-
fluenced by fluctuations in soil pH caused by environmental
factors such as precipitation. According to a previous study,
the bioaccessibility of nitrated PAHs was significantly nega-
tively correlated with soil TOC but only weakly correlated with
pH (Chen et al., 2022a). This observation supports our results
(Fig. 2a-b).

In the case of OPFRs, their total oral bioaccessibility de-
creased with increasing TOC content, although not signifi-
cantly (R? = 0.074, p = 0.368; Appendix A Fig. S3). This could
be attributed to the classification of OPFRs into three sub-
groups based on the difference in straight chain substituents:
chlorinated OPFRs (Cl-OPFRs), alkyl OPFRs (alkyl-OPFRs), and
aryl OPFRs (aryl-OPFRs). The total desorption of CI-OPFRs
(R = 0.532, p = 0.017) and alkyl-OPFRs (R? = 0.740, p = 0.001),
but not aryl-OPFRs (R? = 0.044, p = 0.560), from soils into
simulated gastrointestinal juices exhibited a significant nega-
tive correlation with soil TOC content (Fig. 2c). Similar results
were observed in a previous investigation, which indicated a
negative correlation between the organic carbon content and
the oral bioaccessibility of TDCPP, EHDPP, and TEHP in atmo-
spheric fine particulate matter (Zeng et al., 2021). The effect
of soil TOC content on the bioaccessibility of OPFRs may be
explained by the fact that increasing organic matter content
provides more adsorption sites for hydrophobic organic pollu-
tants (Palm et al., 2002), and OPFRs in soils bind to the micro-
pores of organic matter, thereby reducing the transoral avail-
ability of organisms.

The physicochemical properties of organic pollutants can
affect their bioaccessibility. The logKow is a crucial parameter
for determining the water solubility of organic pollutants. Ad-
ditionally, as the number of rings in PAHs increases, their sol-
ubility in water decreases. The release of PAHs from soils into
simulated gastrointestinal juices decreased with increasing
logKow (R? = 0.073, p = 0.041) and molecular weight (R? = 0.081,
p = 0.032) of the PAHs (Fig. 3a-b). Similar negative correla-
tions between logKow values and bioaccessibility have been
observed for other organic pollutants, including polychlori-
nated biphenyls and other chlorinated compounds, in various
environmental matrices such as fish and dust (Drouillard and
Norstrom, 2000; Kang et al., 2013; Kelly et al., 2004; Moser and
McLachlan, 2001; Xing et al., 2008). The R? and p values for
logKow in the spiked soil samples ranged from 0.307 to 0.612
and from 0.001 to 0.032, respectively (Fig. 3c), which are con-
sistent with the findings of Tang et al. (2006), except for the
QL9 sample (R? = 0.178, p = 0.118). The oral bioaccessibility of
individual PAHs initially decreased and then increased with
increasing logKow (Fig. 3d-g). This trend becomes more evident
with increasing soil TOC content. In other words, as the TOC
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content increased, the bioaccessibility of Phe, Pyr, Flt, BaA, Chr,
BbF, and BKF decreased. The low R? and high p value for the
QL9 sample (TOC = 1.22%) may be attributed to this cause. In
a previous study, both negative and positive correlations were
identified between the TOC content and oral bioaccessibility
of PAHs, categorized by logKow values as < 6.0 and > 6.0, re-
spectively. The high TOC content was elucidated by the au-
thors as a driver for increased solubility of the PAHs (logKow

> 6.0) within bile extracts (Kang et al., 2013; Tang et al., 2006).
The R? and p values for molecular weight in the spiked soil
samples ranged from 0.163 to 0.577 and from 0.001 to 0.136,
respectively (Fig. 3h). These findings demonstrate the consis-
tency between the correlation observed in the spiked samples
and the unspiked samples.

For PCHs, their oral bioaccessibility in soils exhibited a neg-
ative correlation with logKow (R2 = 0.367, p = 0.002) and molec-
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ular weight (R? = 0.234, p = 0.019) (Fig. 4a-b). A more pro-
nounced relationship was observed in the spiked soils (logKow:
R? = 0.400, p = 0.001; molecular weight: R? = 0.338, p = 0.003)
(Fig. 4c-d), which is in line with the findings of a negative cor-
relation between oral bioaccessibility and Kow for organochlo-
rine pesticides in food (Wang et al., 2021). Furthermore, the
desorption of OPFRs from unspiked (R? = 0.185, p = 0.002) and
spiked soils (R? = 0.155, p = 0.006) into a simulated human gas-
trointestinal environment decreased as the logKow of OPFRs
increased (Fig. 4e-f). A similar relationship was observed in a
previously published report for each individual OPFR, includ-
ing TCEP, TCPP, and TDCPP, in dust (Quintana et al., 2017). Al-
though both correlations were significant, the correlation ob-
served in spiked soils was stronger than in unspiked soils.
Our results using unspiked samples validate the reliability of
the results obtained from spiked samples, as factors influenc-
ing the bioaccessibility of organic pollutants in soils are com-
monly determined using spiked samples (Juhasz et al., 2016;
Umeh et al., 2019; Zhang et al,, 2015). When incorporating
bioaccessibility into risk assessment, it is advisable to derive
bioaccessibility values from in vitro studies utilizing unspiked
samples.

2.3. Risk assessment of PAHs, PCHs, and OPFRs in
contaminated soils

Residues of organic pollutants in soils can potentially pose
risks to humans. Accurate risk assessment of PAHs in terms
of toxic equivalent quotient (TEQ) with respect to BaP (TEQgap)
can be conducted. The total TEQ levels for all 15 PAHs
(215TEQgap) ranged between 3.85-74.4, 1.32-31.1, 0.47-112, and

21.9-159, while those for 7 carcinogenic PAHS (Z7.carTEQgap)
varied between 3.80-72.9, 1.28-30.6, 0.40-111, and 21.7-158 ng
TEQ/g in BY, ZS, DQ, and QL soils, respectively (Appendix A
Table S10). The ratio of £7.ca;TEQpap to £15TEQpgp in sam-
pling sites of copper-zinc smelting, ink factory, petrochemical,
and antimony mining was 98.1%-98.8%, 95.4%-99.2%, 57.2%-
99.8%, and 99.2%-99.7%, respectively. These findings suggest
that seven types of PAHs with potential human carcinogenic-
ity play a vital role in determining the carcinogenic effect in
the four contaminated areas. Ten PAHs are regulated by a soil
protection law issued by the Dutch Ministry of Housing, Spa-
tial Planning, and the Environment (Wu et al., 2019). In BY, DQ,
and QL soils, there were one, six, and six sampling sites, re-
spectively, with 1y putcn TEQpap Values exceeding the Dutch
soil intervention value (£19.putch TEQgap) of 33 pg/kg (Appendix
A Table S11). This result implies potential adverse effects on
individuals living or working near these 13 PAH-contaminated
soils.

The organic pollutant content in soils does not accurately
reflect the level of contamination that people ingest orally
(Forsberg et al., 2021). The degree of oral bioaccessibility, de-
termined through a batch in vitro experiment using actual
soils without spiking, can be rapidly and accurately used to
correct risk assessment. After correction by oral bioaccessibil-
ity, the Z10.putcn TEQBap Values in the four contaminated sites
were lower than the Dutch soil standard value (Fig. 5a). Po-
tential risks become negligible risks to human health when
considering the degree of oral bioaccessibility. To determine
the age-specific effects of PAH exposure in humans, an assess-
ment of total incremental lifetime cancer risk (ILCR) through
three exposure pathways was conducted. The ILCR values for
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ingestion, inhalation, and dermal pathways were found to
be in the order of 10-4-10-8, 10-8-10~11, and 10-*-107°, re-
spectively (Appendix A Table S12). The findings of a previ-
ous study revealed that the ILCR associated with PAHs sur-
passed the threshold for high potential risk in adults and chil-
dren exposed to soils within industrial zones in two different
cities in India (Sankar et al., 2023). The ILCR values for chil-
dren were higher than those for adults, and the decrease in
ILCR values for children after adjusting for bioaccessibility was
larger than that for adults (Appendix A Table S13). Regarding
children’s health, the number of sampling sites in BY, ZS, and
DQ with potential risks decreased from four to one, from four
to one, and from four to three, respectively, when taking oral
bioaccessibility into account. Potential high risks of PAHs were
found in one, six, and six soils from BY, DQ and QL sampling
sites. After oral bioaccessibility correction (ILCRpgc), one BY,
five DQ, and three QL soils still posed potential risks, while
the risks in the remaining soils became negligible (Fig. 5b). In
addition to children’s health, the adult ILCR values showed po-
tential risks in one, six, and six soil samples from BY, DQ, and
QL areas, respectively. However, the potential risks in these
sites reduced to negligible after considering oral bioaccessi-
bility (Fig. 5b). Similar changes in PAH-related risks were ob-
served in particulate matter with aerodynamic diameters less
than 10 pm (PM,p) before and after oral bioaccessibility adjust-
ment (Sadikovic and Rodenhiser, 2006). Using total concentra-
tions rather than bioaccessible concentrations may have led
to an overestimation of cancer risk.

Daily intakes of soil PCHs and OPFRs were measured for
adults and children. Using bioaccessible concentrations in-
stead of total concentrations resulted in a significant reduc-
tion in daily intakes (Fig. S5c-d). Based on available reference
dose data, the hazard quotients (HQs) of two PCHs and five
OPFRs were calculated for risk assessment. The results indi-
cated that the HQ values for PCHs and OPFRs in soils were all
below one (HQ < 1) (Appendix A Table S14), indicating that
the exposure scenarios presented in this study are unlikely
to cause serious health concerns based on our current un-
derstanding of toxic effects. The effect of oral bioaccessibil-
ity correction will be more pronounced for sites with moder-
ate or severe levels of pollution, resulting in a decrease in the
cost of land restoration after correction. In other words, oral
bioaccessibility must be taken into account when assessing
the risk that organic pollutants in contaminated soils pose to
human health, particularly at sites with high contamination
levels.

A limitation inherent in this study pertains to the absence
of bioavailability data for the target pollutants in the soil sam-
ples. In contrast to bioaccessibility, bioavailability has the po-
tential to more accurately reflect the circumstances surround-
ing the transfer of pollutants from soils into the human circu-
latory system. Nonetheless, bioaccessibility tests offer a con-
venient and cost-effective means for processing a substantial
number of samples. It is imperative to elucidate the relation-
ship between the bioaccessibility and bioavailability of PAHs
across diverse soil properties. This elucidation is crucial for
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deriving bioavailability insights by means of analyzing bioac-
cessibility data.

3. Conclusions

In this study, we investigated contamination profiles and hu-
man health risks associated with three types of hydropho-
bic organic pollutants in soils from four contaminated sites
in China. We observed higher concentrations of PAH concen-
trations in BY, QL, and DQ compared to ZS. The primary source
of PAH pollution in the studied soils was combustion (e.g.,
petroleum, biomass, and coal). PCHs and OPFRs were also de-
tected, but at low concentrations than previously reported.
Nap, TCB, and TDCPP exhibited the highest oral bioaccessibil-
ity capacities among PCHs, OPFRs, and PAHs, respectively. We
found a significant negative correlation between the total oral
bioaccessibility of PAHs, Cl-OPFRs, and alkyl-OPFRs in soils,
and the TOC content. Additionally, there was a significant
positive correlation between soil pH and the total oral bioac-
cessibility of PAHs. The oral bioaccessibility of PAHs, PCHs,
and OPFRs decreased significantly as the pollutant logKew in-
creased, indicating its importance as a variable. Moreover, the
oral bioaccessibility of PAHs and PCHs exhibited an inverse
correlation with their molecular weight. To enhance the accu-
racy of our findings, we considered both spiked and unspiked
samples in establishing these relationships. Considering oral
bioaccessibility, fewer soils were found to pose potential risks
to children, even though some contaminated soils contained
high levels of PAHs. Our results underscore the significance
of assessing oral bioaccessibility when evaluating the health
risk posed by hydrophobic organic pollutants in contaminated
soils. Incorporating oral bioaccessibility into risk assessment
can greatly aid in the development of local soil environmental
criteria.
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