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A B S T R A C T

Bisphenols (BPs) are widely used in plastic manufacturing, food packaging, and other industrial applications, 
with bisphenol A (BPA) being one of the most extensively produced chemicals globally. However, due to its 
endocrine-disrupting properties, BPA has been linked to reproductive abnormalities, metabolic disorders, neu
rodevelopmental impairments, and other adverse health effects, leading to regulatory restrictions. These re
strictions have resulted in increased usage of BPA alternatives and thus exposure to the alternatives, whose 
toxicity thresholds remain insufficiently characterized. To address this gap, this study derived reference doses 
(RfDs) for five BPA alternatives, i.e., bisphenol B (BPB), bisphenol P (BPP), bisphenol Z (BPZ), bisphenol AF 
(BPAF), and bisphenol AP (BPAP), by integrating epidemiological data and animal experiments. The RfDs were 
calculated using Benchmark Dose (BMD) modeling and no observed adverse effect level/lowest observed adverse 
effect level (NOAEL/LOAEL) approaches, combined with uncertainty analysis to quantify risk metrics. The results 
demonstrated that the BMD-derived RfDs for BPB, BPP, and BPZ were 1.05, 0.23, and 5.13 μg/kg-bw/day, 
respectively, while the NOAEL/LOAEL-based RfDs for BPAF and BPAP were 0.04 and 2.31 ng/kg-bw/day. By 
refining toxicity thresholds and risk assessment methodologies, this study not only highlights the potential health 
risks posed by BPs but also supports evidence-based policymaking to safeguard public health.

1. Introduction

Bisphenols (BPs) are extensively utilized in industrial applications, 
particularly in the production of polycarbonate plastics for beverage 
containers, epoxy resins for food can linings, and thermal receipt papers. 
As the most representative bisphenol, bisphenol A (BPA) has been one of 
the most extensively utilized industrial compounds in the world, with 
the global production of approximately 7 million metric tons in 2019 
(İyİgÜndoĞdu et al., 2020) and over 1 million metric tons annually 
produced or imported within the European Economic Area (European 
Chemicals Agency (ECHA), 2023). It has been globally restricted for 

multiple health risks, including obesity (Liu et al., 2019a), cardiovas
cular disease (Zhang et al., 2020), and multiorgan toxicity affecting 
reproductive (Wang et al., 2024; Zhan et al., 2023), causing the wide
spread use of its structural analogues such as bisphenol B (BPB), 
bisphenol AF (BPAF), bisphenol P (BPP), bisphenol AP (BPAP), and 
bisphenol Z (BPZ). For example, the usage of BPAF reached up to 
100-1000 metric tons according to the ECHA in 2023.

Growing environmental monitoring data indicate their detectable 
presence across multiple matrices including atmospheric (Vasiljevic and 
Harner, 2021), aquatic (Wang et al., 2025), and terrestrial systems (Xu 
et al., 2021), as well as in various organisms (Zhao et al., 2021). These 
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chemicals finally can enter into human bodies, demonstrated by the 
detection of the chemicals in urine (Li et al., 2021; Liu et al., 2019b), 
breast milk (Deceuninck et al., 2015), and serum (Liu et al., 2017). 
Notably, these structural analogues exhibit comparable or even stronger 
effects than BPA (Table S1). For example, BPS and BPF demonstrate 
hormonal activity and endocrine-disrupting effects similar to those of 
BPA (Silva et al., 2019; Zhang et al., 2018), with BPS also impairing 
reproductive and nervous systems (Liu et al., 2021). BPB induces greater 
oxidative damage in neuronal cells than BPA (Pang et al., 2019). Ding 
et al. (2025) highlight the impact of BPZ on early embryonic develop
ment, whereas BPP has been associated with obesity (Zhang et al., 
2023). Early exposure to BPAP adversely affects neural behavior in adult 
offspring (Wu et al., 2023a), and BPAF elevates the risk of uterine dis
orders (Wu et al., 2023b).

In non-carcinogenic health risk assessment, the oral reference dose 
(RfD) is a critical parameter. The U.S. Environmental Protection Agency 
(EPA) established an oral reference dose (RfD) for BPA at 0.05 mg/kg- 
bw/day as early as 1988 (USEPA, 1988), while the European Food 
Safety Authority (EFSA) set the tolerable daily intake (TDI) at 
50 ng/kg-bw/day in 2006, further reducing to 0.2 ng/kg-bw/day in 
2023 (EFSA Panel on Food Contact Materials, Enzymes and Processing 
Aids, 2023). Recently, the RfD values of 2.39, 0.37, and 
8.09 ng/kg-bw/day for BPA, BPS, and BPF were established in our 
previous research (Cao et al., 2025). Although these five bisphenols 
(BPB, BPP, BPZ, BPAF, and BPAP) have been listed in Substances of Very 
High Concern (SVHC) for their endocrine-disrupting properties 
(Candidate List of SVHC, 2022), the RfDs remain unavailable. To address 
this gap, this study derives RfDs for these five analogues by integrating 
epidemiological and experimental data through benchmark dose (BMD) 
and no observed adverse effect level/lowest observed adverse effect 
level (NOAEL/LOAEL) approaches, thereby providing essential guid
ance for regulating bisphenol analogues and informing future research.

2. Materials and methods

2.1. Reference dose derivation

2.1.1. Reference dose calculation
The European Food Safety Authority (EFSA Scientific Committee, 

2017) mandates the use of benchmark dose (BMD) and no observed 
adverse effect level (NOAEL)/lowest observed adverse effect level 
(LOAEL) methodologies for deriving human reference doses (RfD), with 
BMD being the preferred approach. For BMD modeling, rodent toxico
logical data was utilized due to insufficient human exposure-response 
data, with NOAEL/LOAEL values supplementing cases where 
dose-response modeling proved infeasible or where critical toxicity data 
gaps existed. The RfD calculation of the present study aligns with 
established toxicological protocols (Hughes et al., 2018; Barnes et al., 
1988), wherein the point of departure (POD) - either BMD or 
NOAEL/LOAEL values from critical effect endpoints - is divided by 
composite uncertainty factors accounting for interspecies extrapolation, 
intraspecies variability, and data limitations, following the formula: 

RfD =
POD
UF

(1) 

where RfD (mg/kg-bw/day) is the reference dose; POD (mg/kg-bw/day) 
is the point of departure; and UF (dimensionless) is the uncertainty 
factor.

2.1.2. Benchmark Dose Software (BMDS) parameter settings
The BMDS used in the present study was developed by the United 

States Environmental Protection Agency (USEPA, 2012), for 
dose-response analysis. Dose-response modeling was performed using 
BMDS, with a benchmark response (BMR) of 10 % (default value) 
established as the harmful effect threshold. For continuous endpoints, 

the benchmark dose-response factor (BMRF) was defined as one stan
dard deviation increment (default value = 1). The BMD was derived at 
the specified BMR, with the benchmark dose lower limit (BMDL) rep
resenting the one-sided 95 % confidence interval of the BMD by default. 
Model selection followed the Akaike Information Criterion (AIC), 
prioritizing the model with the lowest AIC value to optimize 
goodness-of-fit and ensure accurate representation of dose-response 
relationships.

2.1.3. Uncertainty factor
The uncertainty factor (UF) incorporates five critical components, 

and it is calculated through the following formula: 

UF = UFL × UFS × UFA × UFH × UFD (2) 

where UFL, UFS, UFA, and UFH are LOAEL, subchronic, interspecies, and 
intraspecies uncertainty factors, respectively, and UFD is the database 
deficiency factor. All the UFs are dimensionless parameters used in the 
calculations.

The values of uncertainty factors were based on the technical support 
document for deriving the non-cancer reference exposure level 
(OEHHA, 2008). When only the LOAEL is available instead of the 
NOAEL, UFL ranging from 1 to 10 is applied to account for the gap be
tween LOAEL and NOAEL, with 1 typically being the default value. If 
toxicity data comes from a subchronic rather than chronic study, UFS is 
used, generally ranging from 1 to 10. A UFS of 1 may be selected if the 
study duration exceeds 12 % of the estimated life, 3 if the duration is 
between 8 % and 12 %, and 10 if below 8 %. UFA for animal-to-human 
extrapolation addresses interspecies differences, with a default value of 
10 reflecting the assumption that humans are more sensitive than test 
animals, while UFA is reduced to 1 for human studies or 3 when con
verting to a human equivalent dose. UFH for human variability accounts 
for individual sensitivity differences, defaulting to 10 to cover 99 % of 
the population. Finally, UFD for database deficiencies compensates for 
insufficient/missing data (e.g., reproductive or developmental toxicity 
studies), typically ranging from 1 to 10, with higher values assigned 
when more critical data gaps exist.

2.2. Data collection

2.2.1. Data identification and screening
Initially, we narrowed our focus to epidemiological studies. Articles 

reporting bisphenol concentrations in human urine (published before 
December 21, 2024) were identified through the Web of Science (WOS) 
database. Our search strategy employed Boolean operators: we used 
"OR" between bisphenol compounds (exposure domain) and reproduc
tive health keywords (outcome domain), then connected these domains 
with "AND". The reproductive keywords included: ’semen’, ’sperm’, 
’fertility’, ’infertility’, ’anogenital’, and ’sexual development’. We 
restricted our search to English-language, peer-reviewed publications. 
However, since this approach yielded insufficient data to determine the 
point of departure (POD) for the target bisphenols, we expanded our 
search to include rodent studies assessing non-carcinogenic toxicity (not 
limited to reproductive effects). For this expanded search, we used 
bisphenol alternative names combined with the keyword ’toxicity’.

2.2.2. Eligibility criteria
The screening process initially involved title and abstract review to 

identify studies containing our target chemicals. We systematically 
excluded review articles, animal studies, in vitro experiments, method
ological investigations, machine learning-related research, occupational 
exposure studies, meeting abstracts, and studies focusing exclusively on 
semen or blood analysis, along with awarded grants. For studies on the 
reproductive toxicity in human, animal studies should also be excluded. 
Full-text articles were then assessed for eligibility based on the following 
criteria: Further, the eligibility was assessed through a full-text 
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screening: (a) availability of original data in either the main text or 
supplementary materials, with each dataset containing at least three 
paired exposure-effect groups suitable for BMDS software analysis; (b) 
exclusion of studies reporting only mixed compound exposure data; (c) 
for epidemiological studies, requirement of general population subjects 
with urinary bisphenol measurements; (d) for animal studies, restriction 
to oral exposure pathways, with NOAEL/LOAEL values supplementing 
POD when BMD analysis was not applicable. Throughout this process, 
we maintained a data hierarchy prioritizing epidemiological BMD over 
animal experiment BMD, which in turn took precedence over animal 
experiment NOAEL/LOAEL values.

2.3. Data extraction and treatment

2.3.1. Data input for BMDS
For studies where the original data did not report mean exposure 

levels by group, we calculated median values using the following 
methods: when a range was provided, we derived the median as half the 
sum of the upper and lower limits; when only an upper exposure limit 
was available, we used half of this value as the median; when only a 
lower limit was present, we estimated the median as 1.5 times this value. 
These calculated medians were then used as dose group inputs for BMDS 
analysis. In cases where standard deviations were not reported but 95 % 
confidence intervals (95 % CI) were available, we estimated the stan
dard deviation by dividing the sum of the upper and lower confidence 
limits by 3.92 (1.96 × 2). Our methods for estimating sample means and 
standard deviations from sample size, median, range, and/or inter
quartile range followed established protocols described by Luo et al. 
(2018) and Wan et al. (2014).

For BMDS analysis, either continuous or dichotomous variables were 
entered for model fitting. The animal study data processed through BMD 
methodology in original studies were directly utilized. Notably, when 
studies reported statistical significance, only datasets demonstrating 
significant differences were selected for BMDS fitting. This selection 
criterion ensured that included data exhibited either: (1) a statistically 
significant dose-response relationship (p-trend < 0.05), or (2) a clear 

biological dose-response trend. In cases where studies did not report 
significance testing, all available data were subjected to fitting 
procedures.

2.3.2. Human equivalent dose calculation
For rodent studies, dose conversion to human equivalent dose (HED, 

mg/kg-kw/day) was performed according to USEPA (2011) guidelines 
using the following formulas: 

HED = POD × DAF (3) 

DAF =
BW

1
4
a

BW
1
4
h

(4) 

where DAF (dimensionless) is the dosimetric adjustment factor; BWa 
(kg) and BWh

(kg) are animal and human weight, respectively; BWa is 0.02 kg for 
mice and 0.2 kg for rats, and BWh is 70 kg for adults (Sun et al., 2017).

3. Results and discussion

3.1. Literature search, screening, and data extraction

In this study, five BPA alternatives including BPB, BPP, BPZ, BPAF, 
and BPAP were selected as target compounds. Fig. 1 illustrates the 
article search process. Following screening, no suitable epidemiological 
data were identified, prompting a focus on animal toxicity experiments. 
After full-text review, three studies on BPB, one on BPP, and one on BPZ 
were deemed appropriate for BMDS analysis. Due to insufficient data for 
BMD modeling, BPAF and BPAP were instead evaluated using NOAEL/ 
LOAEL values, with 18 and 1 study(s) included for POD determination, 
respectively.

3.2. Metabolism of BPs in organisms

The metabolism and distribution of these five alternatives remain 

Fig. 1. Flow chart of the study selection process.
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insufficiently characterized, underscoring the importance of including 
fecal sample analysis of bisphenol toxicity studies. Pharmacokinetic data 
reveal distinct excretion patterns of BPB: intravenous administration of 
BPB (6 μmol/kg BW) led to stabilized urinary excretion after 8 h 
(approximately 50 % recovery), reaching 55 ± 9.4 % by 24 h (Gely 
et al., 2023). Following oral administration, an increasing trend was 
observed after 10 h, culminating in a urinary excretion ratio of 40 
± 8.3 % after 24 h, demonstrating efficient gastrointestinal absorption 
(Gely et al., 2023). Notably, porcine studies of oral bisphenol mixtures 
demonstrated markedly lower urinary recovery of BPP (1.9 ± 0.8 % 
after 24 h), likely attributable to its high lipophilicity (LogKOW = 6.25) 
which favors hepatic metabolism and fecal excretion (Gely et al., 2023). 
BPZ exhibited unique pharmacokinetics following oral administration 
(200 μmol/kg BW in pigs), with plasma concentrations peaking at 2 h 
and maintaining a plateau until 11 h, suggesting enterohepatic recir
culation; urinary excretion reached 25 % by 11 h and 31 % by 24 h 
(Gely et al., 2023).

The predominant in vivo metabolite of BPAF is BPAF glucuronide 
(BPAF-G) (Skledar, et al., 2019). Cyclical fluctuations in BPAF blood 
concentrations were observed after 8 h in rats and mice following 7-day 
oral exposure (Waidyanatha et al., 2021), suggesting enterohepatic 
recirculation, a phenomenon also documented for BPZ, BPF, and BPS 
(Gely et al., 2023). Porcine toxicokinetic studies revealed 24-hour uri
nary recoveries of 32 ± 7.5 % for BPAF compared to just 12 ± 3.3 % for 
BPAP (Gely et al., 2023). The low BPAP recovery parallels the phar
macokinetics of BPP, likely reflecting extensive first-pass hepatic 
metabolism and fecal excretion due to its high molecular weight and 
poor intestinal absorption (Gely et al., 2023).

3.3. Hazard identification of BPs to animals

Bisphenols primarily exert endocrine-disrupting effects, subse
quently leading to reproductive toxicity and neurotoxicity. In vitro 
studies have demonstrated BPB’s endocrine-disrupting potential 
through its interactions with both the nuclear estrogen receptor ERα and 
the membrane receptor G protein-coupled estrogen receptor (GPER) 
(Boeckers et al., 2020). Serra et al. (2019) conducted a systematic 
evaluation of published in vitro and animal studies examining sex 
hormone-related parameters and reproductive dysfunction, providing 
comprehensive evidence for BPB’s endocrine-disrupting properties. 
Experimental findings include BPB’s impairment of spermatogenesis 
(Ullah et al., 2019a; 2019b), alteration of ovarian biochemical param
eters in rats (Ijaz et al., 2020; Ullah et al., 2019b), and reduction of 
sperm quantity and quality in pubertal mice (Ikhlas and Ahmad, 2020). 
Furthermore, BPB exhibited stronger neurotoxic effects than both BPS 
and BPA in hippocampal cell lines, inducing apoptosis and inhibiting 
cell proliferation (Pang et al., 2019). Additional evidence confirming 
neurotoxicity of BPB has also been reported (Meng et al., 2023).

A study in mice has demonstrated that BPP can induce intestinal 
inflammation and barrier dysfunction via gut microbiota dysbiosis (Ma 
et al., 2023). Non-targeted metabolomics analyses further revealed that 
BPP disrupts hepatic metabolic pathways, resulting in lipid accumula
tion and subsequent obesity development (Zhang et al., 2023). While 
current research primarily investigates reproductive toxicity and 
endocrine-disrupting potential of BPZ, a recent in vitro murine study has 
identified its inhibitory effects on oocyte meiotic maturation (Ma et al., 
2024). Mechanistically, BPZ was found to induce oxidative stress and 
DNA damage, consequently impairing spindle assembly and chromo
some alignment, the effects consistent with those observed for BPA, BPF, 
BPB, and BPS exposures (Ding et al., 2022; Zhang et al., 2020) sub
stantiated that BPZ exhibits BPA-like activities, including the induction 
of ERα/ERβ-mediated estrogenic responses and androgen receptor 
binding affinity.

Transcriptomic analyses demonstrated that BPAP exposure signifi
cantly dysregulated gene expression patterns, ultimately impairing hy
pothalamic development and inducing uterine/ovarian toxicity (Lv 

et al., 2023; Wu et al., 2023b; Yue et al., 2023). Cumulative evidence 
from reproductive toxicity studies confirms detrimental effects of BPAF 
on sexual organ development (Wu et al., 2019; Xue et al., 2023), with 
particularly pronounced impacts in male specimens (Gao et al., 2022). 
Preliminary investigations suggest that BPAP may exert antiestrogenic 
activity, as evidenced by its distinct uterine gene expression profile 
compared to 17β-estradiol (E2) (Xiao et al., 2018). Furthermore, a 
neurotoxicity study revealed that perinatal BPAP exposure leads to 
persistent neurobehavioral deficits in adulthood, correlating with sus
tained microglial hyperactivation in hippocampal regions (Wu et al., 
2023a).

3.4. Hazard identification of BPs to human

Currently, research specifically investigating BPs in human pop
ulations remains limited, while epidemiological studies have primarily 
examined the reproductive and neurodevelopmental toxicity of envi
ronmental pollutants in humans. An in vitro study using human adipo
cytes has demonstrated that BPB disrupts normal metabolic processes 
similarly to BPA. Epidemiological investigations indicate that while BPB 
exposure does not appear to be a primary factor in unexplained recur
rent miscarriage (URM) (Ao et al., 2021), elevated exposure levels may 
increase pregnancy-related anemia risk (Liang et al., 2022). Further
more, neonatal telomere length shows significant association with BPS 
exposure, but not with BPB (Liang et al., 2023).

For BPP, two epidemiological studies have investigated the health 
effects of BPP exposure in female populations. While one study reported 
significantly higher BPP concentrations in case groups compared to 
controls, its effect size was notably smaller than those observed for 
BPAP, BPAF, and BPA in URM cases (Ao et al., 2021). Additionally, 
while thyroid effects have been a focus of BPP research due to its 
endocrine-disrupting potential, a comprehensive study found no sig
nificant association between BPP exposure and either thyroid function 
or volume in reproductive-aged women (Milczarek-Banach et al., 2020).

As for BPZ, epidemiological evidence indicates that it contributes 
significantly to the neurodevelopmental toxicity of bisphenol mixtures, 
with BPZ and BPA showing the strongest associations with neural tube 
defects (NTDs) (Zhu et al., 2023). Furthermore, BPZ has been identified 
as the primary driver of the positive correlation between bisphenol 
mixture exposure and polycystic ovary syndrome (PCOS) in 
reproductive-aged women (Zhan et al., 2023), highlighting its repro
ductive toxicity potential. Collectively, these findings establish BPZ as a 
critical risk component in bisphenol mixture exposures.

Unexplained recurrent miscarriage appears primarily associated 
with BPAP, BPAF, and BPA exposure, with advanced maternal age 
potentially exacerbating susceptibility to bisphenol-mediated effects 
(Ao et al., 2021). Also, emerging evidence links BPAF to neuro
developmental impairments in infants (Xia et al., 2023), while separate 
prospective research has identified associations between prenatal 
exposure to BPAF-containing bisphenol mixtures and the 2D:4D, a 
parameter related to reproductive outcomes in children (Wang et al., 
2021). These findings underscore the need for comprehensive epide
miological studies utilizing representative populations to better char
acterize the relationships between BPAP/BPAF exposure and adverse 
health outcomes.

3.5. Dose-response/effect correlation

Thirteen continuous-summarized datasets from three rat reproduc
tive toxicity studies on BPB exposure were successfully imported into 
BMDS for analysis, with model fitting results presented in Table S2. 
Among male rat oral exposure datasets, only testicular Lipid Peroxida
tion (LPO) data (Ullah et al., 2018) yielded an optimal dose-response 
curve, producing a recommended BMDL of 28.29 mg/kg-bw/day 
based on AIC minimization principles. Analysis of three sperm DNA 
damage datasets (Ullah et al., 2019a) revealed that only the Tail DNA 
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percentage increase showed a statistically significant response, yielding 
a recommended BMDL of 4.10 mg/kg-bw/day. The Power model-fitted 
dose-response curve (Fig. 2D) demonstrated a positive correlation be
tween Tail DNA percentage and administered dose, indicating 
dose-dependent DNA damage progression. Body weight data from Li 
et al. (2021) analysis produced a frequentist power model-derived 
BMDL of 7.81 mg/kg-bw/day, consistent with observed 
dose-dependent weight reduction. Epididymal mass analysis resulted in 
a higher BMDL of 110.10 mg/kg-bw/day using an Exponential Degree 3 
model than the other fitting results. Applying conservative risk assess
ment principles, we established a point of departure (POD) of 
0.95 mg/kg-bw/day as the HED, derived from the Tail DNA damage 
BMDL (4.10 mg/kg-bw/day) identified as the critical effect.

The BMDS analysis was performed on 23 continuous-summarized 
datasets from a comprehensive rat toxicity study examining multi- 
organ effects by BPP exposure (Table S3). The datasets encompassed 
organ mass measurements and oxidative stress parameters, with 12 
meeting BMDS quality criteria for model recommendations. Calculated 
BMDL values ranged from 0.89 to 30.77 mg/kg-bw/day, with the lowest 
value (0.89 mg/kg-bw/day) derived from renal glutathione peroxidase 
(GSH-Px) activity, identified as the most sensitive endpoint. The optimal 
fit was achieved using a frequentist Polynomial degree-2 model (lowest 
AIC), with the dose-response curve (Fig. 3L) demonstrating significant 
dose-dependent suppression of renal GSH-Px activity by BPP. This 
pattern extended to all monitored antioxidant enzymes across organs, 
while thiobarbituric acid reactive substance (TBARS) concentrations 
showed inverse, dose-proportional increases. Histopathological analysis 
revealed dose-dependent necrotic changes in hepatic, cardiac, pulmo
nary, and glomerular tissues, with varying severity observed across 
organ systems (Sattar et al., 2024). The observed renal mass reduction 

was coincident with the adverse impact on both biochemical impair
ment and concomitant pulmonary damage, suggesting a dose-dependent 
deterioration. Based on conservative risk assessment principles, the POD 
was established at 0.89 mg/kg-bw/day (renal GSH-Px BMDL), with a 
corresponding human equivalent dose (HED) of 0.21 mg/kg-bw/day 
calculated for kidney protection.

Only one rodent study comparing the endocrine effects of BPZ and 
2,2-bis(4-cyanatophenyl)propane (Yamasaki and Okuda, 2012) pro
vided suitable data for BMDS analysis, with modeling results presented 
in Table S4. No epidemiologic studies met the inclusion criteria. Among 
23 continuous BPZ datasets from this study, 14 yielded valid BMD es
timates, with BMDL values ranging from 16.9 to 224 mg/kg-bw/day. 
The highest BMDL (224 mg/kg-bw/day) corresponded to hematocrit 
(HCT) reduction in male rats. While the Frequentist Polynomial Degree 
3 Model identified a statistically significant dose-dependent decrease in 
HCT at higher exposures, the effect size was modest. The lowest BMDL 
(16.9 mg/kg-bw/day) was associated with cardiac mass reduction in 
male rats, showing a clear negative dose-response relationship. Notably, 
similar BMDL values were observed for decreased body weight and 
reduced mass of thymus, heart, and prostate (range: 
16.9–22.4 mg/kg-bw/day), suggesting these organ mass changes likely 
reflect systemic weight loss rather than specific organ toxicity. Based on 
this consistent pattern, terminal body weight reduction was identified as 
the critical effect. The derived HED of 4.62 mg/kg-bw/day was calcu
lated from the body weight BMDL of 19.97 mg/kg-bw/day, with the 
corresponding dose-response curve shown in Fig. 4N.

Due to insufficient toxicological data for BPAF and BPAP, NOAEL/ 
LOAEL values were utilized as supplemental metrics. For BPAF, 18 
studies examining neurotoxicity, immunotoxicity, and reproductive 
toxicity reported LOAELs spanning 0.5–200 mg/kg-bw/day, with the 

Fig. 2. BMDS builds the simulated dose-response/effect curves of BPB based on the rodent experiment studies.
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Fig. 3. BMDS builds the simulated dose-response/effect curves of BPP based on the rodent experiment studies.
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Fig. 4. BMDS builds the simulated dose-response/effect curves of BPZ based on the rodent experiment studies.
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lowest LOAEL (0.5 μg/kg-bw/day) derived from a 28-day rat study 
demonstrating hepatic cytoplasmic vacuolization, testicular tubular 
necrosis, and epididymal histopathological alterations (Table S5). For 
BPAP, only one study evaluating anti-estrogenic activity via murine 
anti-uterotrophic assay in mice was identified, showing significant 
uterine weight reduction at 80 μg/kg-bw/day after 10-day exposure. 
The NOAEL/LOAEL analyses of BPAP in rodent experiment studies are 
shown in Table S6. Based on cumulative reproductive toxicity evidence, 
HEDs were calculated as 0.12 μg/kg-bw/day (converted from repro
ductive system LOAEL of BPAF) and 2.08 μg/kg-bw/day (derived from 
uterine mass reduction NOAEL of BPAP), representing the most sensitive 
endpoints for each compound.

3.6. Uncertainty factors

The application of UFs is detailed in Table 1, with all determinations 
based on the critical effects of bisphenols as aforementioned, and the 
selection criteria of UFs are shown in Table S7. For BPB, BPZ, BPP, and 
BPAP, a UFL of 1 was assigned. Since the POD for BPAF was derived from 
a LOAEL, a factor of 10 was applied to account for the LOAEL uncer
tainty. An interspecies UFA of 3 was implemented for all compounds to 
address extrapolation uncertainties from rodent models, particularly 
given the use of HEDs derived from animal data.

Current evidence indicates BPZ may induce NTDs through placental 
transfer and could contribute to maternal anemia or altered infant 
telomere length. Similarly, transplacental transfer of BPAP has been 
demonstrated, with potential associations to URM. Given the paucity of 
human exposure data and the need for protective measures, a maximum 
UFH of 10 was uniformly applied to all five compounds to account for 
potential hypersensitivity in pregnant women and children.

It is critical to note that the RfD establishes toxicity thresholds for 
lifetime human exposure to exogenous compounds. Accordingly, a UFS 
of 10 was assigned per the USEPA Technical Support Document (USEPA, 
2011), as study durations represented less than 8 % of the estimated 
lifespan. While extensive toxicological database of BPAF (encompassing 
organ toxicity, reproductive/immune effects, and neurotoxicity) war
ranted a UFD of 1, the more limited data available for BPB, BPZ, BPP, and 
BPAP justified application of a UFD of 3 for these compounds.

3.7. Derived oral RfD values of the bisphenols

The derived RfDs presented in Table 1 span three orders of magni
tude from 0.04 to 5.13 μg/kg-bw/day for the chemicals, reflecting var
iations in critical toxicity endpoints, data sources, and methodological 
approaches. These RfDs were calculated from animal-derived HEDs, 
introducing substantial uncertainty in extrapolation to human 
exposures.

Specifically, the RfD for BPB was calculated as 1.05 μg/kg-bw/day, 
derived from a reproductive toxicity HED of 0.95 mg/kg-bw/day, based 
on increased Tail DNA percentage in male Sprague-Dawley rats 
following 28-day exposure (composite UF = 900). For BPP, the RfD was 
established at 0.23 μg/kg-bw/day, derived from an organ toxicity HED 
of 0.21 mg/kg-bw/day, corresponding to decreased renal glutathione 
peroxidase (GSH-Px) activity in female Wistar rats after 28-day exposure 
with a composite UF of 900. In the present study, BPZ showed the 
highest RfD (5.13 μg/kg-bw/day), calculated from an endocrine- 
mediated HED of 4.62 mg/kg-bw/day associated with body weight 

reduction in rats following 28-day exposure with a composite UF of 900. 
The RfD for BPAF was determined to be 0.04 ng/kg-bw/day, calculated 
from an HED of 0.12 μg/kg-bw/day derived from rodent studies. His
topathological examination of rats exposed to 0.5 μg/kg-bw/day for 28 
days revealed hepatic cytoplasmic vacuolization, testicular tubular ne
crosis, and epididymal abnormalities, with these findings used to 
establish a composite UF of 3000 for BPAF. Finally, for BPAP, the RfD of 
2.31 ng/kg-bw/day was derived from an HED of 2.08 μg/kg-bw/day, 
based on significant uterine mass reduction observed in mice following 
10-day exposure with a composite UF of 900.

While current toxicity data remain limited, preliminary RfD values 
have been established for the bisphenols. Nevertheless, additional 
studies are required to substantiate and refine these RfD estimates. 
Future research directions should prioritize expansion of human bio
monitoring data, investigation of broader health endpoints, and devel
opment of alternative assessment methodologies.

3.8. Strengthens and limitations

This study establishes a scientific benchmark for the safe manage
ment of bisphenols while highlighting the critical need for data inte
gration and methodological innovation in assessing emerging 
pollutants, offering a framework for future research. However, several 
limitations warrant consideration. The derived RfDs for BPB, BPP, and 
BPZ were approximately three orders of magnitude higher than those for 
BPAF and BPAP, primarily due to variations in toxicological endpoint 
sensitivity, data sources, and methodological approaches. Crucially, 
RfDs should not be interpreted as direct measures of "absolute toxicity", 
as individual substances may target distinct biological pathways and 
exhibit differential metabolic kinetics. These values remain endpoint- 
and exposure route-specific. The present analysis indicates that BPAF 
and BPAP merit heightened regulatory scrutiny.

Additionally, a key limitation arose during data collection: the 
paucity of epidemiological studies necessitated heavy reliance on 
animal-derived data for RfD calculations, substantially increasing un
certainty factors (UF=900–3000). To reduce such uncertainty, future 
studies should prioritize: (1) incorporation of diverse epidemiological 
evidence encompassing broader adverse outcomes, and (2) refinement 
of RfDs through more robust experimental datasets. These advances 
would enable more precise determination of exposure thresholds. While 
these findings advance our understanding, considerable additional 
investigation is warranted.

4. Conclusion

This study presents a systematic integration of epidemiological and 
toxicological data, employing a quantitative risk assessment framework 
based on five categories of UFs to derive RfDs for five bisphenols. The 
assessment identifies reproductive toxicity (impaired spermatogenesis, 
DNA damage) and organ toxicity (renal oxidative stress, uterine atro
phy) as critical endpoints, demonstrating bisphenols’ distinct capacity to 
disrupt endocrine and metabolic pathways. The RfD values were 
calculated as 1.05, 0.23, and 5.13 μg/kg-bw/day for BPB, BPP, and BPZ, 
and 0.04 and 2.31 ng/kg-bw/day for BPAF and BPAP, respectively. 
While the current derivation primarily relies on animal studies, these 
established RfDs provide crucial interim benchmarks for risk assess
ment. This work not only advances the scientific basis for bisphenol 

Table 1 
Uncertainty analysis and RfD calculation results of BPs.

Chemical POD UFL UFA UFH UFS UFD UF RfD
BPB BMDLHED= 0.95 mg/kg-bw/day 1 3 10 10 3 900 1.05 μg/kg-bw/day
BPP BMDLHED = 0.21 mg/kg-bw/day 1 3 10 10 3 900 0.23 μg/kg-bw/day
BPZ BMDLHED = 4.62 mg/kg-bw/day 1 3 10 10 3 900 5.13 μg/kg-bw/day
BPAF LOAELHED = 0.12 μg/kg-bw/day 10 3 10 10 1 3000 0.04 ng/kg-bw/day
BPAP NOAELHED = 2.08 μg/kg-bw/day 1 3 10 10 3 900 2.31 ng/kg-bw/day
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regulation but also highlights key challenges in assessing emerging 
contaminants - particularly the need for innovative approaches to 
address data gaps and the complex interplay of exposure sources in 
modern environments.
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