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ABSTRACT: Low molecular weight amines promote sulfate
(SO4

2− and HSO4
−) formation through acid−base reactions,

contributing to fine particulate matter (PM). Heterogeneous
ozonation converts nontoxic amine salts into highly toxic products,
yet the ozonation activation mechanism is unclear. This work
reveals a sulfate-dominant ozonation mechanism of amine salts in
fine PM by combining advanced mass spectrometry and ab initio
calculation methods. With the synergy of •OH-initiated oxidation,
SO4

2− activates amine ions through deprotonation, producing
imine molecules as ozonation intermediates. Subsequently, HSO4

−

accelerates the formation of the intermediate aminomethanol and
ozonation products. Moreover, this novel ozonation mechanism of
amine salt is verified to be efficient for sulfate fine PM and is not
feasible for chloride or nitrate fine PM. In this study, the key role of sulfate in the ozonation of inert organic compounds is
highlighted, which needs to be considered in fine PM chemistry.

1. INTRODUCTION
Fine particulate matter (PM) is an important component of
atmospheric particles1 and has severe adverse effects on human
health.2,3 New particle formation (NPF) serves as a significant
source of atmospheric ultrafine/fine PM.4,5 Recent studies have
indicated that the sulfuric acid−amine−water ternary nucleation
mechanism can explain NPF events in typical urban
atmospheres,6−8 as well as in the Antarctic atmosphere.9

These field measurement studies directly state that amines
play key roles in fine PM formation on global scale. During NPF,
parent amines are easily converted into amine salts by acid−base
neutralization with acidic seeds10 or displacement with
particulate ammonium salts,11 which subsequently enter the
particle phase.

Composite atmospheric pollution events dominated by PM
and ozone (O3) frequently occur worldwide.12,13 High levels of
O3 and free radicals lead to heterogeneous oxidation of fine PM.
Particulate amine salts are initially nontoxic,14 but the ozonation
products of organic amines,15 including aldehydes, nitrates,
amides, and hydroxylamines, are becoming highly toxic.11,16,17 A
large number of field observation studies18−21 have detected
these species in fine PM, which is likely due to the ozonation of
particulate-phase organic amines. Indeed, monitoring of
aliphatic amines in PM showed that there was a significant
negative correlation between amine and ozone, indicating that
the ozonation process weakened the abundance of amines.22 In
addition, experimental studies have shown that the hydroxyl-
amine generated from the ozonation of dimethylamine salt can
react with dimethylamine to form carcinogenic nitrosodi-

methylamine, contributing about 10% of the nitrosodi-methyl-
amine production in fine PM during summer.23 Additionally,
research has indicated that, the primary amine ozonation in fine
PM in the atmosphere can produce nitroalkanes and amide
products.24 Therefore, elucidating the ozonation mechanism of
particulate amine salts is highly important for accurately
assessing the environmental health risks of ultrafine/fine PM
during composite atmospheric pollution events.

However, large gaps remain in understanding the amine salt
ozonation mechanism in fine PM. Unlike the reactivity of
molecular parent amines to ozone,25,26 amine salts are
chemically inert to ozone.27,28 Thus, intermediates with
ozonation reactivity are first formed to initiate amine salt
ozonation in fine PM. Considering the ozonation reactivity of
amine molecules, in one experimental study on trimethylamine
salt ozonation, it was suggested that amine salt ions
spontaneously revert to parent amine molecules before
undergoing ozonation.11 Unfortunately, this study lacks direct
evidence confirming that the proposed reversion readily occurs
under ambient conditions (temperature = 298 K). Previous
studies have shown that the pKa of amine salt ions is around 10.7,
which means that amine ions are difficult to give protons.29,30
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This suggests that amine ions are more chemically stable than
amine molecules under ambient conditions. Therefore, we
speculate that other active species should participate in and
activate the ozonation reactivity of amine salts in fine PM.

Sulfate (HSO4
−/SO4

2−) is the dominant inorganic compo-
nent in ultrafine/fine PM,31,32 contributing to PM masses
greater than 40% in several areas.33 Previous experimental
studies have shown that HSO4

− is converted into sulfate radical
anions (SO4

•−) by •OH-initiated oxidation, accounting for

Figure 1. •OH-initiated oxidation of NH3CH3
+. EPR spectra of ultrasonic sulfate at pH ∼ 5 under conditions of: (A) in the dark without H2O2, (B)

under natural light without H2O2 and (C) under natural light with H2O2. Oxidation of NH3CH3
+ by •OH: (D) key distance evolution and free energy

distributions along paths of: (E) •NH2CH3
+ formation and (F) NH3CH2

+• formation. (G) The change in the electrostatic potential energy surface
before and after methylamine protonation, where the yellow ball represents the maximum point of the electrostatic potential. O2-addition reaction of
•NH2CH3

+: (H) key distance evolution, and (I) free energy distribution along the path of NH2CH2
+• formation. R, TS, and P indicate the reaction

reactant, transition state, and product, respectively. Key evolutions are determined via BOMD calculations, and free energy distributions are calculated
via MTD calculations.
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organic compound oxidation in the aqueous phase.34,35

Therefore, a sufficient HSO4
− concentration is essential for

SO4
•− generation, although this is not reported in these

experiments. This might work for aqueous PM with strong
acidity (pH = 0−2),36 for which the HSO4

− concentration
fraction is equal to that of SO4

2−. However, for aqueous fine PM
with weak acidity (pH = 4−6), the HSO4

− concentration
fraction dramatically decreases to 0, as determined by the acid−
base equilibrium of the HSO4

−/SO4
2− system.37 In particular,

fine PM with pH = 4−6 is ubiquitous at the global scale,38 where
the HSO4

− concentration is extremely low; rather, SO4
2−

contributes the most to fine PM. Therefore, SO4
•− generation

from HSO4
− oxidation is very limited in atmospheric fine PM,

which cannot account for amine salt ozonation activation.
Additionally, recent studies state that organic compound
oxidation could be initiated by SO4

•− derived from ultraviolet
light irradiation of SO4

2− in aqueous fine PM.39 However, our
electron paramagnetic resonance (EPR) spectroscopy results
indicate that no SO4

•− is formed under natural light (Figure
1A,B). By contrast, when •OH is introduced into SO4

2−

solution, strong signals of oxidant products from amine salt
are detected via proton-transfer-reaction time-of-flight mass
spectrometer (PTR-TOF-MS, in Figure S1). This confirms that
amine salt ozonation cannot be initiated by a single SO4

2− under
natural light. Therefore, •OH is speculated to function in
activating the ozonation of amine salts.

In this study, ab initio calculations, PTR-TOF-MS, PTR-
quadrupole mass spectrometry (PTR-QMS) and EPR methods
are combined to systematically investigate the ozonation
activation mechanism of methylamine salt (proxy amine salt)
in aqueous sulfate PM (In theoretical calculations, a sphere
model containing sulfate ions, methylamine ions and water
molecules is used to represent sulfate PM; in experiments, a
sulfate-containing solution is used to represent sulfate PM). On
the basis of new data, we propose the sulfate-dominant
ozonation mechanism of amine salts, which is proposed to be
a potentially important mechanism of amine loss in the
atmosphere. Herein, gaseous •OH, rather than SO4

•−, acts as
an oxidant to initiate methylamine salt ions under natural light.
Moreover, SO4

2− activates methylamine salt ozonation reactivity
and accelerates subsequent ozonation. Moreover, this is shown
to be unique for sulfate, and is not feasible for chloride or nitrate
anions in fine PM. To our knowledge, this ozonation mechanism
of amine salts is novel and needs to be invoked in fine PM
chemistry.

2. METHODS
2.1. Theoretical Calculations. Born−Oppenheimer molecular

dynamics (BOMD) and metadynamics (MTD) simulations are
implemented in the CP2K package40,41 to explore the ozonation
process of methylamine ions (NH3CH3

+) in fine PM. As shown in
Figure S2, the simulation uses a spherical model containing sulfate ions,
methylamine ions and water molecules to represent sulfate PM, where
the white balls represent H, blue balls represent N, gray balls represent
C, red balls represent O, and yellow balls represent S. The Becke−Lee−
Yang−Parr exchange−correlation functional42,43 with Grimme’s
dispersion correction (BLYP-D3) is used.44−46 The valence and core
electrons are treated with double-ζ + polarization DV2P basis sets47

and Goedecker−Teter−Hutter (GTH) norm-conserving pseudopo-
tentials,48,49 respectively. Before all the simulations, to achieve the
equilibrium state, the system undergoes geometry optimization in the
NVT ensemble for 10,000 steps. Here, N, V, and T represent the
number of atoms, volume, and temperature, respectively. The

calculated reaction barrier (ΔG‡) and reaction rate constant (k) are
summarized in Supporting Information (SI), Tables S1 and S2.
2.2. Mass Spectrometry Experiments. To verify the proposed

activation mechanism of methylamine cation oxidation, as shown in
Figure S3, six groups of experiments are designed using a sulfate-
containing solution to represent sulfate PM, and the concentration of
the corresponding products in the headspace of the volumetric flask are
quantitatively detected. Each experiment involves the addition of
equimolar amounts of methylamine (MA) and hydrochloric acid (HCl)
to ensure complete protonation of the MA in solution. The pH of each
group of experimental solutions is controlled between 4 and 6 to ensure
compliance with the true atmospheric fine PM acidity.38 First, a set of
pre-experiment is performed before the formal experiment to detect
formaldehyde (HCHO) and hydrogen cyanide (HCN) by using PTR-
TOF-MS-1000 (Ionicon Analytik, Innsbruck, Austria). Furthermore,
HCHO and HCN’s concentrations are measured via PTR-QMS-300
(Ionicon Analytik, Innsbruck, Austria). The measurement principles
and technical details of the PTR-QMS and PTR-TOF-MS are
extensively described in previous literature.50−52

2.3. EPR Experiments. The presence of free radicals in the dark
without •OH, under natural light without •OH, and under natural light
with •OH is also confirmed via EPR. All the configured solutions
remain at pH ∼ 5 and contain a circular nitro spin trap 5,5-dimethyl-1-
pyrroliin-N-oxide (DMPO) for O-center radical trapping. More
computational and experimental details are provided in Part 1 of the
Supporting Information (SI).

3. RESULTS AND DISCUSSION
3.1. Ozonation Activation Mechanism. Previous studies

have suggested that •OH can oxidize HSO4
− to form SO4

•−39 or
oxidize SO4

2− under the catalysis of iron oxide to form SO4
•−53

and that SO4
•− may be able to oxidize NH3CH3

+. Therefore, the
same sulfate solutions under three conditions�in the dark
without H2O2, under natural light without H2O2, and under
natural light with H2O2�are detected by EPR. As shown in
Figure 1, no SO4

•− signal is detected in any of the samples, and
only the •OH signal is detected in the sample with H2O2 (Figure
1C). Therefore, we speculate that NH3CH3

+ should be initially
oxidized by •OH rather than SO4

•− in fine PM under natural
light.

For further verification, five separate BOMD simulations are
carried out to simulate the reaction of NH3CH3

+ with •OH in
sulfate aerosols. Similar to the reactions of methylamine
molecules (NH2CH3) with •OH,54,55 N-centered radicals
(•NH2CH3

+, reaction 1) and C-centered radicals (NH3CH2
+•,

reaction 2) might be produced.

NH CH OH NH CH H O3 3 2 3 2+ ++ • • +
(1)

NH CH OH NH CH H O3 3 3 2 2+ ++ • • +
(2)

Unexpectedly, only •NH2CH3
+ is confirmed in the five

independent BOMD simulations (Figures 1D and S4). MTD
calculations are carried out to provide thermodynamic and
kinetic evidence. The ΔG‡ value of the •NH2CH3

+ formation
path is calculated as 2.4 kcal/mol (Figure 1E), and k is 1.08 ×
1011 M−1s−1. For the NH3CH2

+• formation path, k is 1.15 × 10
M−1s−1, as determined by ΔG‡ = 16 kcal/mol (Figure 1F).
Taken together, the branching ratio of •NH2CH3

+ formation
path is 100%, indicating that •NH2CH3

+ is the dominant
intermediate from the initial oxidation of NH3CH3

+ by •OH,
and the total k is 1.08 × 1011 M−1s−1. •NH2CH3

+ subsequently
carries out O2- addition (reaction 3).

NH CH O NH CH HO2 3 2 2 2 2+ +• + + •
(3)
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The BOMD trajectory shows that a complex of •NH2CH3
+···

O2 with a lifetime of 12000 fs is formed (Figure 1H), which is
not found in the gaseous oxidation of NH2CH3 molecules.56 At t
= 37,428 fs, a methylimine ion (NH2CH2

+) is formed,
overcoming a ΔG‡ of 10.1 kcal/mol (Figure 1I). The above
results explain why the oxidation reactivity of NH3CH3

+ is
completely different from that of NH2CH3.

To explain the intrinsic reactivity differences between
NH3CH3

+ ion and the NH2CH3 molecule, the related
electrostatic potential energy surface of NH3CH3

+ ion is
compared to that of NH2CH3 molecule. As shown in Figure
1G, the electrostatic potential maxima of NH2CH3 molecules
are uniformly distributed on HC (the hydrogen of the methyl
−CH3 group) and HN (the hydrogen of −NH2 group). This
illustrates why HN and HC can be abstracted by •OH in almost
equal chances, resulting in •NH2CH3 and NH3CH2

• formation
from NH2CH3 molecule.57,58 For NH3CH3

+ ions, the electro-
static potential maxima points are focused mainly on HN. This
finding indicates that only HN-abstraction by •OH is feasible and
generates •NH2CH3

+, which is consistent with previous studies

showing that the protonation of N atoms inhibits H extraction at
the α-C position.59,60

Although our results have confirmed that SO4
•− cannot be

formed under natural light (Figure 1), we still discuss the
competition reactions between NH3CH3

+ oxidation by •OH
and SO4

•−. On the basis of our MTD results for NH3CH3
+ by

SO4
•− (Figure S5A), ΔG‡ is calculated as 17.7 kcal/mol, and k is

6.49 × 10−1 M−1s−1. Therefore, the yield rate v1(SO4
•−) of

•NH2CH3
+ from SO4

•−-initiated oxidation is described as 6.49 ×
10−1 [NH3CH3

+] × [SO4
•−] M−1s−1. On the basis of the present

results, the yield rate v1(•OH) of •NH2CH3
+ from •OH-

initiated oxidation is described as 1.08 × 1011 [NH3CH3
+] ×

[•OH] M−1s−1. Accordingly, the competitive ratio v1(•OH)/
v1(SO4

•−) in aerosols is denoted as 1.66 × 1011 [•OH]/[SO4
•−].

For atmospheric aerosols, the mean value of [•OH] is 1.81 ×
10−15 M,61 and that of [SO4

•−] is 1.00 × 10−14−3.00 × 10−14

M.39 Thus, the ratio v1(•OH)/v1(SO4
•−) is calculated as 1.00 ×

1010−3.01 × 1010 under ambient conditions (Figure S5B),
implying that •OH plays a dominant role in the initial oxidation
of NH3CH3

+ in universal fine PM even when SO4
•− exists.

Figure 2. Formation and oxidation reactions of the NHCH2 intermediate. (A) The reaction time, ΔG‡ and k, of NHCH2 formation from NH2CH2
+

deprotonation by H2O/SO4
2−. The reaction time and ΔG‡ are calculated on the basis of the BOMD and MTD results in the Figure S6. (B) Changes in

the NHCH2 yield rate v4(SO4
2−)/v4(H2O) with the concentration ratio [SO4

2−]/[H2O] in fine PM. Oxidation reaction of NHCH2 with •OH and O2:
(C, D) key distance evolution and (E, F) free energy distributions. R, TS, and P indicate the reaction reactant, transition state, and product,
respectively. Key evolutions are determined via BOMD calculations, and free energy distributions are calculated via MTD calculations.
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Considering the components of fine PM, NH2CH2
+ could be

further deprotonated by SO4
2− or H2O (reaction 4).

NH CH SO /H O NHCH HSO /H O2 2 4
2

2 2 4 3+ ++ +
(4)

The product methylenimine molecule (NHCH2), which is
the intermediate of methylamine salt ozonation, has ozonation
activity.62,63 Based on the present BOMD simulation (Figure
S6A,C), the deprotonation times of the two methods are
compared in Figure 2A. For deprotonation by H2O, NH2CH2

+

first forms a stable complex of NHCH2···H2O at 360 fs and then
converts to NHCH2 after 1100 fs. In contrast, the deprotonation
time of SO4

2− is approximately 10% (100 fs) greater than that of
H2O, implying faster NHCH2 generation. Moreover, MTD
simulations (Figure S6B,D) and kinetics calculations provide
more details about their competitiveness. The related ΔG‡ value
of deprotonation by H2O is 5.0 kcal/mol, and k is 1.34 × 109

M−1s−1. Accordingly, the NHCH2 yield rate v4(H2O) is denoted
as 1.34 × 109 [NH2CH2

+] × [H2O] M−1s−1. In contrast, the
ΔG‡ of deprotonation by SO4

2− is only 0.4 kcal/mol, which is
less than 10% of that of deprotonation by H2O. The derived k
value is 3.16 × 1012 M−1s−1, indicating that NHCH2 yield rate
v4(SO4

2−) is 3.16 × 1012 [NH2CH2
+] × [SO4

2−] M−1s−1.
Therefore, the complete ratio v4(SO4

2−)/v4(H2O) is denoted as
2.36 × 1012 [SO4

2−]/[H2O], which is displayed in Figure 2B.
For atmospheric fine PM, [H2O] varies from 1.2 to 89.9 μg/
m3,64 and [SO4

2−] varies from 3.0 to 75.0 μg/m3.65 Accordingly,
the real NHCH2 yield rate ratio of v4(SO4

2−)/v4(H2O) is
calculated as 7.88 × 1010−1.48 × 1014, implying that SO4

2−,
rather than H2O, plays a dominant role in accelerating the yields
of NHCH2 intermediate in atmospheric fine PM.

However, NHCH2 is chemically unstable and can be rapidly
converted into HCN through an oxidation reaction with •OH/

O2 in gas phase.62,66 Gas-phase radicals, especially •OH, play a
significant role in the degradation of organic matter.67,68

Therefore, we further investigate the feasibility of NHCH2
reaction with •OH/O2 in fine PM (from reactions 5 to 6).

NHCH OH NCH H O2 2 2+ +• • (5)

NCH O HCN HO2 2 2+ +• • (6)

The BOMD results show that the first H-abstraction step by
•OH (reaction 5) occurs within 79 fs (Figure 2C), and the
second H-abstraction step by O2 (reaction 6) occurs within
6076 fs (Figure 2D). Clearly, the second H-abstraction step is
the rate-limiting step. The MTD results (Figure 2E,F) reveal
that the ΔG‡ values of these two H-abstraction steps are 0.4 and
5.6 kcal/mol, and the corresponding k values are 3.16 × 1012 and
4.86 × 108 M−1s−1, respectively. Therefore, consistent with the
BOMD results, the second H-abstraction step is the decisive step
of NHCH2 oxidation, and the total k is 4.86 × 108 M−1s−1.
Compared with 3.0 × 10−12−1.7 × 10−11 M−1s−1 in gas
phase,62,66 NHCH2 conversion into HCN in fine PM is
promoted by 19−20 orders of magnitude. The difference in k
values between the two phases is induced by surface solvation
effect.

Moreover, NHCH2 is supposed to readily carry out hydration
reactions, converting into aminomethanol (NH2CH2OH) in
fine PM (reaction 7).69,70

NHCH H O NH CH OH2 2 2 2+ (7)

The product NH2CH2OH can undergo ozonation,63 which
has been confirmed as an intermediate in methylamine salt
ozonation. However, on the basis of our MTD results (Figures 3

Figure 3. Formation and decomposition of the NH2CH2OH intermediate under no catalysis, H2O catalysis and HSO4
−catalysis, respectively. (A) ΔG‡

and k values of NH2CH2OH formation. (B) Changes in the NH2CH2OH formation rate v7(HSO4
−)/v7(H2O) with the concentration ratio [HSO4

−]/
[H2O] in fine PM. (C) ΔG‡ and k values of NH2CH2OH decomposition. (D) Change in the NH2CH2OH decomposition rate v8(HSO4

−)/v8(H2O)
with the concentration ratio [HSO4

−]/[H2O]. All the ΔG‡ and k values are calculated on the basis of the MTD results in the Figure S7.
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and S7), the ΔG‡ value of direct hydration is calculated as 51.7
kcal/mol, and the related k is as low as 7.55 × 10−26 M−1s−1,
which cannot explain rapid hydration reaction of NHCH2 in fine
PM. Water is found to act as a positive catalyst in many
heterogeneous reactions.71−73 Our results show that this is also
true in NHCH2 hydration reaction in fine PM. The MTD results
show that under water catalysis, the related ΔG‡ decreases to
27.5 kcal/mol, and k increases to 4.22 × 10−8 M−1s−1, indicating
a promoting effect on the hydration reaction. In addition,
HSO4

− is common in regular fine PM and is also a byproduct of
NH2CH2

+ deprotonation by SO4
2−. Hence, we further

investigated HSO4
− catalysis of NHCH2 hydration reaction.

Present results display that the corresponding ΔG‡ value
significantly decreases to 9.5 kcal/mol and that k dramatically
increases to 6.70 × 105 M−1s−1. Therefore, both H2O and
HSO4

− promote NHCH2 hydration in atmospheric sulfate fine
PM. To further determine which factor plays a leading role in
promoting NHCH2 hydration, the ratio v7(HSO4

−)/v7(H2O) is
calculated as a function of [HSO4

−]/[H2O], where v7(H2O)
and v7(HSO4

−) represent the NH2CH2OH yield rates caused by
H2O and HSO4

−, respectively. For atmospheric fine PM,
[HSO4

−]/[H2O] equals 1.07 × 10−13−8.48 × 10−11.64,74 Thus,
as shown in Figure 3B, v7(HSO4

−)/v7(H2O) is calculated as
1.70−1.35 × 103 in fine PM. This implies that HSO4

−, rather
than water, significantly accelerates NH2CH2OH intermediate
of methylamine salt ozonation in regular fine PM.

NH2CH2OH is reported to be unstable75 and can be
decomposed into HCHO and ammonia (NH3).76−78 In
addition to promoting NHCH2 hydration, H2O and HSO4

−

strongly accelerate NH2CH2OH decomposition (reaction 8).

NH CH OH HCHO NH2 2 3+ (8)

Based on our MTD results (Figure 3C), the ΔG‡ value of
direct decomposition is 36.8 kcal/mol, and the derived k is 6.38
× 10−15 s−1, implying a difficult reaction under ambient

conditions. In contrast, the related ΔG‡ value decreases to
25.2 kcal/mol because of H2O catalysis and to 7.5 kcal/mol
because of HSO4

− catalysis. The derived k increases to 2.05 ×
10−6 s−1 for the former and 1.96 × 107 s−1 for the latter. Clearly,
NH2CH2OH decomposition is greatly promoted in regular
sulfate fine PM. The ratio v8(HSO4

−)/v8(H2O) is thus
determined by [HSO4

−]/[H2O], where v8(H2O) and
v8(HSO4

−) represent NH2CH2OH decomposition rates caused
by H2O and HSO4

−, respectively. As shown in Figure 3D, the
real HCHO and NH3 yield ratio of v8(HSO4

−)/v8(H2O) is
calculated as 1.02−8.10 × 102 under ambient conditions.
Therefore, similar circumstances are confirmed for NHCH2
hydration, and HSO4

− also plays a role in accelerating
NH2CH2OH decomposition in regular fine PM.
3.2. Verified by Mass Spectrometry. To verify the

proposed ozonation activation mechanism, PTR-TOF-MS is
applied to confirm the formations of HCHO and HCN, and the
related concentrations are measured by using PTR-QMS. The
different experimental conditions and calculated average
concentrations of each product are summarized in Table S3.
The corresponding detected concentration profiles are in Figure
4. The Exp. One result shows that neither [HCHO] nor [HCN]
increases (Figure 4A) without •OH or SO4

2−. Moreover, the
Exp. Two results reveal the same phenomenon when SO4

2− is
added (Figure 4B). Exp. One and Exp. Two together indicate
that NHCH2 is not formed without •OH-initiated oxidation. In
contrast, NHCH2 is formed after H2O2 is added in Exp. Three
(Figure 4C), which is indicated by the significant growth of
[HCHO] and [HCN]. This state of •OH-initiated oxidation is
really required to activate NH3CH3

+.
NH2CH2

+ deprotonation reaction is caused predominantly by
SO4

2− in our proposed activation mechanism, which is the
second requirement for NH3CH3

+ activation. To verify this,
SO4

2− is added in Exp. 4 on the basis of Exp. 3. As expected,
[HCHO] and [HCN] in Exp. 4 (Figure 4D) dramatically

Figure 4. NHCH2 and NH2CH2OH formation confirmed by PTR-QMS. Changes in the concentrations of HCHO and HCN detected in EXPs. 1−6,
respectively. The six EXPs are carried out (A) without •OH and without any ions (Table S3, EXP. 1), (B) without •OH and with SO4

2− (Table S3,
EXP. 2), (C) with •OH and without any ions (Table S3, EXP. 3), (D) with •OH and with SO4

2− (Table S3, EXP. 4), (E) with •OH and with Cl−
(Table S3, EXP. 5), and (F) with •OH and with NO3

− (Table S3, EXP. 6).
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increase by 1 order of magnitude compared with those in Exp. 3.
This finding illustrates that SO4

2− significantly enhances
methylamine ion deprotonation, which is consistent with our
theoretical calculation results.

However, in Exp. 3, NH2CH2
+ deprotonation might have

been caused by Cl−. To determine whether Cl− could cause
NH2CH2

+ deprotonation, more Cl− is added in Exp. 5 than in
Exp. 3. As shown in Exp. 5 (Figure 4E), [HCHO] and [HCN]
remain equal to those observed in Exp. 3 (Figure 4C), indicating
that water, rather than Cl−, contributes to NH2CH2

+

deprotonation. Similarly, we also examine whether NO3
− can

cause this deprotonation. For this purpose, NO3
− is added in

Exp. 6 on the basis of Exp. 3. Similar to Exp. 5, neither [HCHO]
nor [HCN] in Exp. 6 (Figure 4F) further increases based on
those observed in Exp. 3. Therefore, NO3

− cannot lead to
NH2CH2

+ deprotonation. Taken together, these results indicate
that, in nitrate or chlorine salt PM, NH2CH2

+ ozonation
activation relies only on the water content but not inorganic ions
(Cl− and NO3

−). Moreover, owing to SO4
2− enhancement of

NH2CH2
+ deprotonation, NH2CH2

+ ozonation activation is
expected to be more rapid in sulfate aerosols than in nitrate or
chlorine salt aerosols under the same atmospheric conditions.
3.3. Subsequent Ozonation. For two intermediates

(NHCH2 and NH2CH2OH), we further investigated their
ozonation mechanisms in fine PM. The corresponding energy
barriers are calculated (Figures S8 and S9). Rate constants are
thus determined and compared to those in gas phase or aqueous
phase.62,63 Some new findings are found here (Figure 5). For
NHCH2 ozonation in aqueous phase, the dominant product is
formamide (NH2CHO) produced from the chain path (from
reactions 9 to 10),63 whereas for fine PM particles, the dominant
product is changed to formaldonitrone (O-NHCH2) yielded
from the Criegee path (from reactions 11 to 13 and Figure S8A).

Chain reaction: NHCH O NHCH O2 3 2 3+ (9)

NHCH O O CHNH O2 3 2 2= + (10)

Crigee reaction: NHCH O NHCH O2 3 2 3+ (11)

NHCH O HCHO HNOO2 3 + (12)

NHCH O O NHCH O2 3 2 2+ (13)

This can be caused by the lower density of water molecules at
the air−water interface, positioning the C�N bond favorably
for reacting with gas−phase molecules, thereby increasing the
likelihood of the Criegee path.79,80 Moreover, in previous
studies, it was reported that NHCH2 undergoes a Criegee
reaction with a small k of 1.0 × 10−24 M−1s−1 in gas phase,62

whereas the present results revealed that k (4.43 × 1012 M−1s−1)
is dramatically increased by 36 orders of magnitude in fine PM
(Figure 5A). Moreover, the decomposition of the produced
Criegee intermediate (Figure 5B) is also accelerated in reaction
12 (C−O/O−O bond breakage) and reaction 13 (N−C/O−O
bond breakage). The related k value is 2.67 × 1012 s−1 for the
former and 1.90 × 1012 s−1 for the latter. Accordingly, the total k
of decomposition is 4.57 × 1012 s−1 in fine PM, which is 14
orders of magnitude greater than that in gas phase62 and 9 orders
of magnitude greater than that in aqueous phase.63 Afterward,
formaldonitrone (O-NHCH2) and formaldehyde (HCHO) are
produced, which has also been observed in previous
experimental studies.11

Figure 5. k of the subsequent ozonation reactions for NHCH2 and NH2CH2OH in the fine PM, gas and aqueous phases, respectively. (A) NHCH2
ozonation through the Criegee and chain paths. (B) Criegee intermediate decomposition. (C) O-NHCH2 isomerization under different catalytic
effects. (D) NH2CH2OH ozonation. k of fine PM in this work is calculated on the basis of the MTD results in the Figures S8 and S9, and k in the gas and
aqueous phases are obtained from the literature.
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O-NHCH2 subsequently undergoes isomerization, producing
formaldoxime (HO-NCH2, reaction 14).

O NHCH HO NCH2 2 (14)

The differences between the isomerization reactions are
compared in gas phase and fine PM (Figure 5C). Previous
studies have revealed that, in gas phase, O-NHCH2 undergoes
one-step isomerization with a small k value of 1.99 × 10−23−3.56
× 10−19 s−1,81,82 which rarely occurs under ambient conditions.
The k value only increases to 1.61 × 101 s−1 even under H2O
catalysis in gas phase.82 In contrast, in fine PM, O-NHCH2
undergoes rapid isomerization through two steps: O-NHCH2···
HSO4

− complex formation and H-exchange by HSO4
− (Figure

S8E). Owing to this, O-NHCH2 isomerization on fine PM
surface is distinctly promoted. Specifically, (Figure S8F), under
HSO4

− catalysis, the higher ΔG‡ value of the two-step is reduced
to 3.9 kcal/mol, which is 12.4 kcal/mol lower than that (16.3
kcal/mol) under H2O catalysis. This indicates that the total k
value is increased to 6.72 × 109 s−1 under HSO4

− catalysis, which
is 9 orders of magnitude greater than that (6.90 s−1) under water
catalysis. However, in atmospheric sulfate PM, the real
[HSO4

−]/[H2O] varies in the range of 1.07 × 10−13−8.48 ×
10−11, and the isomerization rate ratio caused by HSO4

− and
water is calculated to be 1.42 × 10−3−8.26 × 10−1. Therefore, in
atmospheric sulfate PM, HSO4

− is found to assist water in
promoting O-NHCH2 isomerization. Importantly, our results
clarify that oxime (HO-NCH2) is the ozonation product of
methylamine salt, which is mistakenly identified as an amide in
experimental studies.11

The NH2CH2OH intermediate reacts with O3 (reaction 15)
and decomposes into HCHO and hydroxylamine (NH2OH,
reaction 16).

NH CH OH O CH O N O2 2 3 5 2 2+ + (15)

CH O N NH OH HCHO5 2 2 + (16)

Specifically, as shown in Figures 5D and S9A, O3 directly
attacks the N atom of NH2CH2OH, generating trans-CH5O2N
and O2 with ΔG‡ of 13.8 kcal/mol and k of 4.70 × 102 M−1s−1.
Subsequently, trans-CH5O2N spontaneously converts to cis-
CH5O2N (Figure S10) and decomposes into HCHO and

NH2OH, with a ΔG‡ value of 5.7 kcal/mol and a k value of 4.10
× 108 s−1. The k values for these two steps are similar to those
reported in previous studies (3.91 × 10−1, 3.68 × 109 M−1s−1).63

The complete ozonation mechanism is shown in Figure 6.
The intermediate NHCH2 is degraded through three pathways:
oxidation with •OH (reaction 5), hydration with H2O/HSO4

−

(reaction 7), and ozonation with O3 (reaction 11). To verify the
importance of the ozonation pathway, we calculated the
branching ratios of the three pathways. The reaction rate vr7
for reaction 7 is calculated as 6.70 × 105 [NHCH2] × [H2O] ×
[HSO4

−] M−1s−1. Average [H2O] is 2.53 × 10−9 M64 and
[HSO4

−] is 5.48 × 10−21 M74 in universal aerosols. Thus, vr7 is
calculated as 9.28 × 10−24[NHCH2] s−1. The reaction rate vr5 for
reaction 5 is calculated as 3.16 × 1012[NHCH2] × [•OH]
M−1s−1, the average [•OH] is 1.81 × 10−15 M in atmosphere.61

Accordingly, vr5 is calculated as 5.72 × 10−3[NHCH2] s−1.
Similarly, the reaction rate vr11 for reaction 11 is calculated as
4.43 × 1012[NHCH2] × [O3] M−1s−1. The average [O3] is 2.66
× 10−6 M in atmosphere.83,84 Therefore, vr11 is calculated as 1.18
× 107[NHCH2] s−1. Taken together, the branching ratio for
reaction 11 is 100% under real atmospheric conditions.
Likewise, we can also obtain that for all reaction paths involving
NH2CH2OH, the branching ratio for reaction 15 with O3 is
100%, too. In addition, many literatures have proved that there is
a surface electric field in microdroplets, which can tear H2O to
produce •OH and promote the reaction,85−87 and we do not
consider the [HSO4

−] produced by the deprotonation of SO4
2−,

which means that the oxidation/hydration of NHCH2 and the
oxidation of NH3CH3

+ (reaction 1) are likely to become more
feasible under real atmospheric conditions.

4. CONCLUSIONS
In this study, we find that inert methylamine ions can be
activated through synergistic reactions of •OH-initiated
oxidation and SO4

2−-initiated deprotonation. The intermediate
NHCH2 is thus produced, and SO4

2− accounts for its rapid
formation. The NH2CH2OH intermediate is formed from
NHCH2 hydration and rapidly converts into HCHO, HCN and
NH3, and HSO4

− is responsible for its rapid formation and
conversion. This also explains why NH2CH2OH is undetected
in experimental studies.69,70 The subsequent ozonation of
NHCH2 and NH2CH2OH in sulfate PM is significantly

Figure 6. •OH-sulfate synergistic ozonation mechanism of methylamine salt.
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accelerated, leading to more rapid production of O-NHCH2 and
HCHO than in gas and aqueous phases.62,63 HSO4

− is found to
assist water in promoting O-NHCH2 isomerization in the
HSO4

− concentration range of real atmospheric PM. Notice that
it cannot be directly speculated that NH�CH2 is completely
converted through reaction 11 (Figure 6) in the context of
unknown kinetic rates in the ambient atmosphere. The 100%
branching ratio through reaction 11 in this work is not absolute,
and it is relative to reaction 9. Among the ozonation products we
confirmed that aldehyde and hydroxylamine are consistent with
the reported results of amine salt oxidation products in PM.11

The findings from this work also clarify that oxime (formal-
doxime, HO-NCH2) is the ozonation product of the amine salt,
which is mistaken for its isomeride amide in previous
experimental studies.11 Our findings deepen the understanding
of the ozonations of amine salts in atmospheric fine PM.
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