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A B S T R A C T

The impact of volatile organic compound (VOC) and metal/metalloid exposure on child growth remains inad
equately characterized in electronic waste recycling settings, with underlying toxic mechanisms poorly under
stood. We aim to investigate the effects of VOC and metal/metalloid exposure on the growth of children in the 
electronic waste recycling area, exploring underlying potential mechanisms through urinary metabolomics. We 
measured growth indicators, urinary VOC metabolites, metals/metalloids, and metabolomic profiles in children 
(n = 409) from an electronic waste recycling area. Using the U.S. Centers for Disease Control and Prevention 
Child Growth Standards, 117 children (28.6 %) were diagnosed with growth failure. These children exhibited 
significantly elevated urinary concentrations of 6 VOC metabolites and metals/metalloids, which correlated 
inversely with weight-for-age and height-for-age z-scores compared to normally developing peers. Metabolomic 
analyses revealed exposure-associated disturbances in metabolic pathways, identifying riboflavin, trehalose, and 
xanthosine as key metabolites linked to adverse growth outcomes. Mediation analysis demonstrated that ribo
flavin and xanthosine significantly mediated associations between VOC metabolites and metals/metalloids and 
growth indicators (mediation proportions: 11.1–12.9 %), suggesting these exposures impair growth partly 
through disruption of riboflavin and xanthosine homeostasis. Collectively, our findings established that VOC and 
metal/metalloid exposures contribute to growth failure in children from electronic waste recycling areas, 
highlighting the urgent need for enhanced pollution control measures to protect pediatric health.

1. Introduction

Driven by rapid technological obsolescence, global electronic waste 
generation reached approximately 60 million tons in 2024, with sig
nificant volumes exported to developing nations for resource recovery 
[1–3]. However, reliance on informal recycling practices, such as open 
burning and acid immersion, has caused severe environmental pollution 
in these regions [4]. Regulatory interventions in electronic waste 

recycling areas like Guiyu have significantly decreased exposure to most 
persistent organic pollutants, with studies showing 4- to 7-fold re
ductions in polycyclic aromatic hydrocarbons exposure [5] and two 
orders of magnitude reductions in polychlorinated biphenyls levels [6]. 
However, these measures had limited impact on some volatile organic 
compounds (VOCs) and metals/metalloids. Our prior study found that 
12 of 18 measured urinary VOC metabolites significantly increased from 
2016 to 2021 [7]. Additionally, metals/metalloids emission analysis of 
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formal e-waste dismantling workshops showed copper (Cu), nickel (Ni), 
and manganese (Mn) releases comparable to or exceeding those of 
informal workshops [8]. This sustained high exposure may stem from 
the inherent resistance to removal of some VOCs [9], abundant metals/ 
metalloids in electronic waste, and atomization escape during process
ing [8]. Notably, VOCs and metals/metalloids are co-released during 
common electronic waste processing activities (e.g., heating, and 
shredding) and persist simultaneously in environmental matrices at 
these sites [8]. While VOCs dominate atmospheric emissions and inha
lation risks, metals/metalloids accumulate in dust/soil, creating multi- 
pathway exposure [10,11]. Their co-persistence created technologi
cally intractable mixture exposures distinct from regulated persistent 
organic pollutants. Additionally, epidemiological evidence linked both 
VOCs and metals/metalloids to multiorgan toxicity including cardio
vascular impairment, hepatotoxicity, carcinogenesis, and neuro
developmental disruption [12–15]. Critically, their combined exposure 
may amplify toxic effects synergistically [16]. For example, enzymatic 
benzene activation yields reactive semiquinones and quinones, which 
generate oxygen ions via redox cycling, indirectly exacerbating oxida
tive stress from environmental metal/metalloid exposure [17]. 
Although exposure to either metals/metalloids or VOCs mixture is 
linked to increased risk of metabolic syndrome, simultaneous exposure 
accelerates its development, further elevating the risk [18]. Given these 
concerns, VOCs and metals/metalloids should be prioritized as key 
pollutants, with comprehensive assessments of their combined exposure 
profiles and associated health risks for populations in Guiyu.

Environmental risks contributed to 25 % of the global disease burden 
in 2017, according to the World Health Organization, and their reduc
tion could prevent a quarter of deaths in children under five annually 
[19]. Children are more vulnerable to environmental pollutants due to 
their developing physiology, and early exposure can permanently alter 
their structure, physiology, and metabolism, significantly affecting long- 
term health [20]. The U.S. National Toxicology Program data indicated 
that children with blood lead (Pb) levels below 10 μg/dL may experience 
delayed puberty, while maternal levels below 5 μg/dL correlated with 
fetal birth weight loss and subsequent growth stunting [21]. Meta- 
analyses further corroborated consistent associations between expo
sure to Pb, cadmium (Cd), arsenic (As), and mercury (Mo) and impaired 
growth trajectories in children [22]. Potential mechanisms include 
impaired placental nutrient transport and disruption of bone growth or 
growth plate morphology [20,23]. Only one study utilizing 2011–2018 
National Health and Nutrition Examination Survey data has revealed an 
association between VOC exposure and reduced growth parameters in 
children [24]. This growth-impairing effect may be mediated through 
disruption of the balance between bone formation and resorption during 
skeletal development [25]. However, the impact of single and combined 
exposure to VOCs and metals/metalloids on child growth in the context 
of electronic waste pollution remains understudied. Current research 
primarily established statistical links between these exposures and 
growth indicators, with limited investigation into underlying biological 
mechanisms.

Metabolomics offers a powerful approach to understanding how 
environmental factors affect child growth by analyzing metabolic 
changes [23,26]. Although previous research has identified metabolites 
and pathways connecting environmental exposure to growth impair
ment [27,28], the extent to which urinary metabolites mediate 
exposure-outcome relationships is unknown. Urinary biomarkers are 
valuable for early disease detection because they directly reflect real- 
time systemic physiology through blood filtration, without homeostat
ic regulation or storage [29]. This allows for the identification of path
ological signatures before clinical symptoms appear, enabling early 
intervention [29]. In this study, we used metabolomics, a meet-in-the- 
middle strategy, and mediation analysis to: (1) characterize VOC and 
metal/metalloid exposure-induced metabolic disruptions and (2) 
quantify their mediating effects on growth failure. To our knowledge, no 
studies have employed this approach to clarify the mechanistic 

pathways linking e-waste pollutants to child growth outcomes via 
changes in the urinary metabolome.

This study measured and compared urinary concentrations of 18 
VOC metabolites and 18 metals/metalloids in children with and without 
growth failure in Guiyu. We then explored the individual and joint ef
fects of differential VOC metabolite and metal/metalloid exposure on 
child growth indicators. In addition, urine metabolomics analysis was 
performed to identify metabolites and pathways linked to VOC and 
metal/metalloid exposure and child growth. Our aim is to elucidate the 
effects of co-exposure to VOCs and metals/metalloids on child growth 
and their underlying biological mechanisms, thereby providing refer
ence for targeted intervention strategy to safeguard the healthy growth 
of children in electronic waste recycling areas.

2. Materials and methods

2.1. Study population and sample collection

This research received approval from the Research Ethics Committee 
of South China Institute of Environmental Sciences, Ministry of Ecology 
and Environment. In October 2021, investigators recruited children 
from neighborhoods near the electronic waste dismantling sites in Guiyu 
Town, Shantou City. Children were included for analysis if they: 1) 
resided in the survey area; 2) had not self-reported genetic history or 
recent infectious diseases; 3) avoided consumed fried or grilled food in 
the past week; and 4) had not smoking or drinking behavior. A total of 
409 children met the above criteria, comprising 207 boys and 202 girls 
aged 2 to 16 years. All participants or their guardians were informed 
about the purpose of this study. Collect fasting morning urine samples 
from participants in clean 50 mL polypropylene centrifuge tubes and 
promptly place them in a low-temperature transport box. Upon arrival at 
the laboratory, store the samples in a − 20 ◦C freezer until analysis. 
Furthermore, participants’ general information (e.g., age, sex, weight, 
etc.), lifestyle (i.e., exercise time and sleep time) and additional details 
(e.g., passive smoking and maternal education level) were surveyed to 
reflect confounding factors that may affect statistical results.

2.2. Urinary VOC metabolites measurement

The chemicals used in this study are of analytical or reagent grade, 
detailed information can be available in Text S1. The pretreatment 
process for urinary thiodiglycolic acid (TGA), 2-aminothiazoline-4-car
boxylic acid (ATCA), N-acetyl-S-(3-hydroxypropyl-1-methyl)-L- 
cysteine (HPMMA), Mandelic acid (MA), N-acetyl-S-(3,4-dihydrox
ybutyl)-l-cysteine (DHBMA), N-acetyl-S-(2-hydroxypropyl)-L-cysteine 
(2-HPMA), N-acetyl-S-(N-methylcarbamoyl)-l-cysteine (AMCC), (R)-2- 
thioxothiazolidine-4-carboxylic acid (TTCA), N-acetyl-S-(2-cyanoethyl)- 
L-cysteine (CYMA), N-acetyl-S-(benzyl)-L-cysteine (BMA), N-acetyl-S- 
(n-propyl)-L-cysteine (BPMA), Phenylglyoxylic acid (PGA), N-acetyl-S- 
(3-hydroxypropyl)-L-cysteine (3-HPMA), Trans,trans-muconic acid 
(MU), 2-methylhippuric acid (2-MHA), 3-methylhippuric acid & 4- 
methylhippuric acid (3&4-MHA), N-acetyl-S-(2-carbamoylethyl)-L- 
cysteine (AAMA), and N-acetyl-S-(2-carboxy propyl)-L-cysteine (CPMA) 
is identical, as outlined in our previous article [30]. Briefly, isotope- 
labeled internal standards and formic acid buffer were added to each 
1 mL of urine supernatant, then incubated with 10 μL of β-glucuroni
dase/sulfatase at 37 ◦C overnight. Subsequently, the solid phase 
extraction procedure was initiated to enrich and purify the target ana
lytes. The eluent was obtained by sequentially adding methanol, water, 
0.1 % formic acid in water (v:v), urine sample mixture, and 2 % formic 
acid in acetonitrile (v/v) to the polar-enhanced polymer cartridges. After 
drying and redissolution, 100 μL of supernatant was utilized for 
instrumental analysis.

Eighteen VOC metabolites were separated using an ultra-high- 
performance liquid chromatography system (Vanquish Autosampler, 
Thermo Fisher Scientific, USA) and were simultaneously measured by 
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electrospray tandem mass spectrometry (TSQ Quantis Triple Quadru
pole system, Thermo Fisher Scientific, USA). The analysis parameters 
included a mobile phase flow rate of 0.4 mL/min, an injection volume of 
2 μL, and a program temperature of 40 ◦C. The total analysis time was 
15.01 min, with mobile phase gradient settings detailed in Table S2. Due 
to the difficulty in separating the isomers 3-MHA and 4-MHA, they were 
quantified together as 3&4-MHA, consistent with previous studies [30]. 
All analytes were determined in negative mode. We ensured the reli
ability of our analysis results through quality assurance and control. 
Water, matrix, and reagent blanks were included in each batch. The 
procedure was identical for blanks and urine samples, with no signifi
cant background contamination detected. The linearities of most urinary 
VOC metabolites were greater than 0.980. Mean recoveries from two 
spiked sample levels ranged from 95.7 % to 108 %, except for PGA 
(Table S3). The limit of detection (LOD) was determined from the signal- 
to-noise ratios of target analytes, ranging from 0.150 to 30.0 μg/L for 
VOC metabolites (Table S4). Relative standard deviations for all analy
tes were below 15.0 %, except for PGA (15.7 %) (Table S3). Further
more, 8.00 % of randomly selected samples from each batch were 
reanalyzed to calculate the coefficient of variation, which spanned from 
4.65 % to 14.5 %, excluding CYMA (21.5 %) and BPMA (32.1 %) 
(Fig. S1).

2.3. Urinary metals/metalloids measurement

Sample preparation for urinary Cu, tin (Sn), Pb, Cd, cobalt (Co), 
chromium (Cr), Mn, Mo, vanadium (V), Ni, gallium (Ga), As, selenium 
(Se), rubidium (Rb), strontium (Sr), antimony (Sb), tellurium (Te), and 
cesium (Cs) analysis using a straightforward dilution method. Before 
dilution, the urine samples were centrifuged at 13,000 rpm for 15 min 
and subsequently filtered using 0.45 μm micropore filters (Welch 
Technology Company, Zhejiang province, China) to minimize matrix 
effect interference. Then 600 μL of filtered urine was transferred to a 
new 15 mL polypropylene tube, followed by the addition of 100 μL of 
internal standard and 5.3 mL of 2 % diluted nitric acid (v:v) to achieve a 
tenfold dilution for instrument analysis. Eighteen metals/metalloids 
were then conducted with an inductively coupled plasma mass spec
trometer (Agilent 7800, USA). Quantification was performed using a 
seven-point calibration curve with mixed multi-element standards and 
internal standards correction (i.e., scandium, germanium, yttrium, in
dium, terbium, and bismuth). The instrument operating conditions are 
as follows: cooling gas flow rate at 15.0 L/min, auxiliary gas flow rate at 
1.0 L/min, atomized gas flow rate at 1.0 L/min, atomizer temperature at 
3 ◦C, and the peristaltic pump speed at 0.1 rps. Furthermore, Jaffe’s 
colorimetric method was used to quantify urinary creatinine levels to 
correct for urine dilution’s effect on analyte concentration [30].

Quality assurance and quality control measures were applied to 
ensure the reliability of metal/metalloid concentrations. Procedural and 
reagent blanks were prepared to assess background contamination. No 
significant contamination was observed, with a low LOD ranging from 
0.002 to 0.363 μg/g (Table S4). The linear correlation coefficients for 
the standard curves of all analytes exceeded 0.990. Average relative 
recoveries for 18 metals/metalloids in spiked samples (3.00 μg/L and 
10.0 μg/L) ranged from 92.6 % to 114 %, except for Ni and As in the low 
spiked samples, which slightly exceeded 130 % (Table S3). Relative 
standard deviations for all metals/metalloids were below 20 % 
(Table S3).

2.4. Urine metabolomics analysis

The pre-treatment procedure for urine metabolomics is as follows: 
Urine was diluted to 200 μL to achieve a creatinine concentration of 4 
mmol/L. Proteins were precipitated by adding 600 μL of ice-cold 
acetonitrile-methanol (1:1, v/v), vertexing for 5 min, and incubating 
at − 20 ◦C for 15 min. After centrifugation at 14,000 rpm for 20 min at 
4 ◦C, the supernatant was analyzed by ultra-high performance liquid 

chromatography coupled with quadrupole/orbitrap high-resolution 
mass spectrometry (Vanquish UPLC systems coupled with Q-Exactive 
Orbitrap-HRMS, Thermo Fisher Scientific Co., Germany).

Chromatographic separation was achieved using an ACQUITY 
UPLC® HSS T3 column (150 × 2.1 mm, 1.8 μm, Waters, USA) with a 
flow rate of 0.3 mL/min. The mobile phase consisted of 0.1 % formic 
acid in water (A) and acetonitrile (B), with a column temperature of 
40 ◦C and a 2 μL injection volume. Gradient elution was performed as 
follows: 0–3 min, 2 % B; 3–12 min, 2–98 % B; 12–14 min, 98 % B; 
14.0–14.1 min, 98–2 % B; 14.1–18 min, 2 % B. MS detection employed 
electrospray ionization with spray voltages of 3.5 kV and − 2.5 kV in 
positive and negative modes, respectively, and a capillary temperature 
of 325 ◦C. Sheath and auxiliary gas flows were set to 40 and 10 arbitrary 
units, respectively. Data were acquired using full scan MS (resolution 
70,000, m/z 70–1050) and dd-MS2 (resolution 17,500, top 5 ions frag
mented with stepped normalized collision energy at 20 %, 40 %, and 60 
%).

Our previous research established reliable metabolomics references, 
demonstrating stable instrument performance and inapparent drift in 
quality control samples derived from pooled urine [23]. Raw data was 
processed using Compound Discoverer 3.3 SP2 software (Thermo Fisher 
Scientific Co., Germany) using an untargeted metabolomics workflow 
including: Align Retention Times, Detect Compounds, Group Com
pounds, Predict Compositions, Search ChemSpider, Assign Compound 
Annotations, Fill Gaps, Mark Background Compounds, Search mzVault, 
and Search Mass Lists. Peak alignment parameters included retention 
time (0.5 min tolerance) and mass (5 ppm tolerance). Compound 
detection was based on a signal-to-noise ratio of 10 and a peak intensity 
threshold of 1 × 106. Features with detection rate ≤ 50 % or relative 
standard deviation ≥20 % in QC samples were excluded. Metabolite 
validation against the mzCloud database resulted in the identification of 
180 urinary metabolites.

2.5. Growth indicators calculation

Child growth was assessed using weight-for-age z-scores (WAZ), 
height-for-age z-scores (HAZ), and body mass index-for-age z-scores 
(BMIZ), calculated against U.S. Centers for Disease Control and Pre
vention reference parameters [31]. These parameters, derived from a 
cohort of healthy children raised under optimal conditions (e.g., 
breastfeeding, non-smoking mothers, adequate healthcare), represent 
the standard physiological growth trajectory [31,32]. Quantifying in
dividual deviations from this trajectory via WAZ, HAZ, and BMIZ pro
vides an objective basis for diagnosing growth status among children. 
WAZ assesses the dynamic changes in weight, with a value < − 2 indi
cating underweight. HAZ recorded linear growth status, where a score 
< − 2 indicates stunting. BMIZ evaluates the proportion of fat to muscle 
content in bodies, and a value < − 2 is defined as wasting. In this study, 
growth failure in children were defined by the presence of any of the 
following states: underweight, stunting, or wasting [33]. All indicators 
are calculated using the LMS method: 

Z =
(
(X/M)

L
− 1

)/
(L× S) (1) 

where X is the physical measurement (e.g. weight, height, or BMI) of 
children in Guiyu; L (skew), M (median), and S (generalized coefficient 
of variation) are the age-specific and sex-specific LMS parameters. This 
study used LMS parameters from the Centers for Disease Control and 
Prevention (for children aged 2–20) because World Health Organization 
LMS parameters only cover children under 10 [34].

2.6. Statistical analysis

Data statistics and modeling were performed using R studio (version 
4.1.3). Differences in baseline characteristics and urinary concentrations 
of VOC metabolites and metals/metalloids between children with and 
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without growth failure were examined with Chi-square tests and Mann- 
Whitney U tests. VOC metabolites and metals/metalloids measured 
below the LODs were imputed as LODs/√2. Target analyte concentra
tions underwent logarithmic conversion prior to correlation analysis. 
Statistical significance for correlation and differential analyses was set at 
a two-tailed p-value of less than 0.05.

Spearman correlation analysis assessed associations among VOC 
metabolites and metals/metalloids. Multiple linear regression explored 
linear associations of differential VOC metabolites and metals/metal
loids with child growth indicators. Significant exposures identified by 
multiple linear regression were further analyzed for non-linear re
lationships with growth indicators using restricted cubic spline regres
sion. Stratified analyses were then employed to assess the sensitivity of 
primary linear associations in different subgroup. Additionally, quantile 
g-computation, weighted quantile sum, and Bayesian kernel machine 
regression examined the impact of mixed exposure to screened VOC 
metabolites and metals/metalloids on growth indicators. These models 
mentioned above were adjusted for age, sex, maternal education levels, 
passive smoking, exercise time, and sleep time. Using the R package 
“qgcomp” with exposures discretized into 4 quantiles and 500 iterations 
for variance estimation, we quantified the joint effect of simultaneous 
one-quantile increases in crucial VOC metabolites and metals/metal
loids on child growth indicators. When this joint effect showed statis
tically significant associations, we examined the bidirectional weights, 
which are constrained to sum to ±1 within their respective positive and 
negative effect directions, to determine individual contributions. In 
weighted quantile sum model, we divided the data into training and 
testing sets in a 4:6 ratio. Using the “gWQS” package, we generated 1000 
bootstrap samples from the training set to derive the weight index and fit 
the model on the validation set. For the index significantly associated 
with growth, we examined component weights to determine the relative 
contributions of individual VOC metabolites and metals/metalloids 
within the mixture.

However, quantile g-computation and weighted quantile sum 
regression models fail to evaluate the nonlinearity and interactions 
within mixtures. Thus, we employed a Bayesian kernel machine 
regression model to validate the above results of mixture analyses, as 
this approach accommodates nonlinear exposure-response relationships 
and interactions without requiring predefined parametric forms [35]. 
Specifically, the joint effects of VOCs and metals/metalloids on growth 
indicators were assessed by comparing growth indicator estimates per 
10th percentile change from the median VOC and metal/metalloid 
concentration (reference value). Posterior inclusion probabilities quan
tified each VOC metabolites and metal/metalloid’s relative importance, 
with a threshold greater than 0.5 indicating significant contribution. 
Univariate and bivariate exposure-response functions evaluated indi
vidual effect and interaction of VOC metabolites and metal/metalloids. 
Using the “bkmr” package, we implemented the Bayesian kernel ma
chine regression model with 15,000 Markov Chain Monte Carlo itera
tions for all analyses to ensure accuracy.

Integrating three analytical models provides complementary ad
vantages for mixture analysis: quantile g-computation regression 
quantifies joint intervention effects, weighted quantile sum regression 
evaluates unidirectional exposure-response associations, and Bayesian 
kernel machine regression characterizes complex exposure-response 
curved surface form, collectively offering multidimensional insights. 
Triangulating results across methods strengthens causal inference: 
agreement in key exposure identification validates toxicity drivers, 
while divergence indicates potential interactions. This integration mit
igates individual model limitations, ensuring robust conclusions about 
mixture health hazards.

To identify molecular perturbations, we employed a metabolomics 
workflow including a metabolome-wide association study, pathway 
enrichment analysis, and the meet-in-the-middle approach. The 
metabolome-wide association study explored associations between 
urine metabolomics, urinary VOC metabolites and metals/metalloids, 

and child growth indicators. Due to the right-skewed distribution of 
metabolite concentrations, data were log2 transformed for normaliza
tion. Covariates in the metabolome-wide association study analysis were 
consistent with previous analyses. Subsequently, the meet-in-the-middle 
approach identified overlapping metabolites. Pathway enrichment 
analysis, using the Small Molecule Pathway Database in MetaboAnalyst 
website (version 6.0), identified pathways associated with these over
lapping metabolites. Finally, the quantile g-computation and weighted 
quantile sum models assessed the contribution of individual metabolites 
to the association between the mixture, WAZ, and HAZ. Mediation 
analysis investigated the role of dominated metabolites in mediating the 
relationship between VOC and metal/metalloid exposure and growth 
indicators, to elucidate underlying mechanisms.

3. Result

3.1. Basic characteristics

The basic characteristics of participants are presented in Table 1. The 
geometric mean age was 8.50 ± 2.89 years, with a slightly higher pro
portion of boys (50.6 %). Most participants had low maternal education 
levels (middle school or less) and sufficient sleep (over 9 h). More than 
half exercised for less than one hour daily or were frequently exposed to 
passive smoking. Among 409 participants, 117 children (28.6 %) were 
diagnosed with growth failure. Age, sex, passive smoking, maternal 
education level, exercise time, and sleep time were adjusted in all cor
relation models referring to previous research, although no significant 
differences with these confounders between the two groups were 

Table 1 
Baseline characteristics of children in the electronic waste recycling area.

Characteristica All children Growth 
failure b

Normal p-Values 
c

N (%) 409 117 (28.6) 292 (71.4)
Weight (kg) 25.4 ± 11.1 20.2 ± 7.60 27.9 ± 11.4
Height (cm) 128 ± 18.4 120 ± 17.1 131 ± 18.1
WAZ − 0.990 ±

1.31
− 2.40 ±
1.20

− 0.420 ±
0.850

HAZ − 0.720 ±
1.24

− 1.62 ±
1.43

− 0.350 ±
0.930

BMIZ − 0.875 ±
2.17

− 2.30 ±
3.43

− 0.306 ±
0.880

Age (years) 8.50 ± 2.89 8.14 ± 2.91 8.65 ± 2.88 0.058
Sex 0.472

boys 207 (50.6) 63 (53.8) 144 (49.3)
girls 202 (49.4) 54 (46.2) 148 (50.7)

Exercise time 0.597
≤ 1 h 241 (58.9) 72 (64.9) 169 (59.5)
1–2 h 117 (28.6) 29 (24.1) 88 (31.0)
≥ 2 h 37 (9.00) 10 (9.00) 27 (9.50)

Passive smoking 0.488
yes 216 (53.6) 58 (50.4) 158 (54.9)
no 187 (46.4) 57 (49.6) 130 (45.1)

Maternal education 
level

0.140

middle school or 
less

363 (91.9) 97 (88.2) 266 (93.3)

high school or 
above

32 (8.10) 13 (11.8) 19 (6.70)

Sleeping time 0.442
< 9 h 79 (19.7) 27 (23.5) 52 (18.1)
9–10 h 189 (47.0) 50 (43.5) 139 (48.4)
≥ 10 h 134 (33.3) 38 (33.0) 96 (33.5)

Abbreviations: WAZ, weight-for-age z-scores; HAZ, height-for-age z-scores; 
BMIZ, body mass index-for-age z-scores.

a Continuous variables are presented as geometric mean (standard deviance) 
and categorical variables are presented as n (%).

b Children with growth failure is defined as WAZ, HAZ, or BMIZ less than − 2.
c Differences in continuous variables are assessed using the Mann-Whitney U 

test, while differences in categorical variables are evaluated using the Chi- 
Square test.
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observed (p > 0.05).

3.2. Distribution of VOC metabolites and metals/metalloids in urine

The concentration distribution and inter-group comparison of uri
nary VOC metabolites and metals/metalloids in growth failure cases 
versus controls are presented in Table 2. Among the VOC metabolites, 
TGA had the highest concentration in both groups, followed by 3-HPMA 
and MA. For metals/metalloids, Rb was the highest, followed by Sr and 
As. Children with growth failure had higher concentrations of DHBMA, 
AMCC, CYMA, 2-HPMA, TGA, PGA, HPMMA, ATCA, Cr, Co, Ni, Cu, As, 
Rb, Mo, Sn, and Pb compared to normal children (p < 0.05), suggesting 
that these differential VOC metabolites and metals/metalloids may be 
associated with child growth. Additionally, strong correlations between 
VOC metabolites and between metals/metalloids were observed through 
Spearman correlation analysis, meaning that the impacts of single VOC 
and metal/metalloid exposure on child growth may be affected by other 
VOCs and metals/metalloids (Fig. S2).

3.3. Association between individual VOC metabolites and metals/ 
metalloids and child growth indicators

Multiple linear regression models were used to analyze the linear 

correlations between individual VOC metabolites and metals/metalloids 
and child growth indicators (Fig. 1 and Table S5). After adjusting for 
confounding factors, we observed that DHBMA, HPMMA, ATCA, TGA, 
Cu, Mo, Sn, and Pb were linked to reduced WAZ (p < 0.05) (Fig. 1A). 
Similarly, PGA, HPMMA, AMCC, 2-HPMA, TGA, ATCA, Co, Rb, Cr, Pb, 
Cu, Ni, and Sn, negatively correlated with HAZ (p < 0.05) (Fig. 1B). In 
examining BMIZ, only Ga demonstrated a positive effect (Fig. S3). 
Consequently, TGA, HPMMA, ATCA, Cu, Sn, and Pb, associated with 
WAZ and HAZ, were included in the subsequent mixture analysis to 
assess their combined effects on child growth. RCS regression models 
revealed no nonlinear associations (p for overall <0.05, p for non-linear 
>0.05) (Fig. S4 and S5), indicating that exposure to these VOCs and 
metals/metalloids adversely affect child growth in a dose-dependent 
manner.

3.4. Associations between a mixture of VOC metabolites and metals/ 
metalloids and child growth indicators

Mixture analysis models based on linear additivity assumption were 
employed to explore the joint effect of TGA, HPMMA, ATCA, Cu, Sn, and 
Pb exposure on child growth indicators. Quantile g-computation 
regression models showed that a quartile increase in the mixture was 
associated with reduced WAZ [− 0.549 (95 % CI: − 0.772, − 0.331)] and 

Table 2 
Concentrations distribution of urinary VOC metabolites and metals/metalloids of children in the electronic waste recycling area (μg/g creatinine).

Parent compounds Variables Growth failure Normal p-values

5th 50th 90th GM 5th 50th 90th GM

1,3-Butadiene DHBMA 92.2 198 344 204 88.0 170 293 173 0.002
Benzene MU 21.3 74.6 224 80.0 19.3 81.2 306 81.5 0.948
Acrylamide AAMA 22.9 57.9 160 63.5 22.1 51.6 125 55.0 0.096
N, N-Dimethyl formamide AMCC 34.1 67.0 144 73.7 32.2 59.4 113 62.4 0.010
Acrylonitrile CYMA 0.901 1.83 4.37 1.94 0.693 1.58 3.53 1.70 0.020
1-Bromopropane BPMA 0.267 3.74 13.0 3.37 0.530 3.67 20.4 3.86 0.488
Propylene oxide 2-HPMA 15.7 38.4 77.6 37.2 16.4 33.8 68.5 34.3 0.019
1,2-dichloroethane TGA 664 1.27 × 103 1.90 × 103 1.24 × 103 436 960 1.69 × 103 977 <0.001
Ethylbenzene or Styrene PGA 90.6 276 496 259 70.8 211 450 206 0.001
Toluene BMA 2.47 10.4 33.6 10.8 3.56 8.83 25.0 9.75 0.152
Acrolein 3-HPMA 296 808 2.68 × 103 888 229 759 2.26 × 103 806 0.306
Crotonaldehyde HPMMA 127 271 416 278 125 229 403 235 0.001
Xylene 2-MHA 17.1 42.2 105 43.3 13.9 40.8 99.3 42.7 0.359
Xylene 3&4-MHA 73.2 187 455 184 65.4 179 579 209 0.343
Methyl methacrylate CPMA 146 295 612 313 131 269 625 290 0.129
Carbon disulfide TTCA 3.22 32.2 170 28.7 2.22 24.7 166 24.6 0.393
Cyanide ATCA 120 294 723 309 81.5 241 507 228 <0.001
Ethylbenzene or Styrene MA 108 413 1.29 × 103 422 97.9 339 1.33 × 103 373 0.103

V 10.1 34.6 77.3 34.3 10.5 32.1 73.5 31.4 0.166
Cr 13.8 30.8 61.9 31.5 12.2 27.7 51.2 27.6 0.015
Mn 0.282 2.10 15.0 2.43 0.296 1.69 8.79 1.94 0.070
Co 0.145 0.614 1.37 0.553 0.129 0.513 1.14 0.486 0.045
Ni 1.61 6.76 16.2 6.58 1.31 5.85 14.4 5.34 0.048
Cu 15.3 38.7 99.1 42.6 15.4 30.6 71.5 33.3 0.001
Ga 18.6 47.7 117 50.4 19.5 58.6 117 56.6 0.013
As 50.0 116 208 119 41.8 93.2 202 99.6 0.020
Se 6.40 11.5 22.2 13.4 6.46 11.8 19.2 12.1 0.994
Rb 672 1.39 × 103 2.99 × 103 1.46 × 103 491 1.07 × 103 2.79 × 103 1.16 × 103 0.001
Sr 56.1 194 406 179 39.2 188 415 169 0.531
Mo 38.1 103 185 99.0 32.2 79.7 157 79.2 0.001
Cd 0.349 0.763 1.51 0.775 0.315 0.661 1.29 0.681 0.090
Sn 0.587 1.51 5.07 1.86 0.501 1.22 3.36 1.33 0.007
Sb 0.040 0.127 0.618 0.149 0.038 0.128 0.401 0.127 0.601
Te 0.048 0.158 0.368 0.154 0.047 0.137 0.328 0.138 0.123
Cs 5.13 9.15 16.4 9.34 4.50 8.15 15.4 8.48 0.056
Pb 0.951 2.67 10.5 3.13 0.723 2.42 6.24 2.40 0.035

Abbreviations: VOCs, volatile organic compounds; DHBMA, N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine; MU, Trans,trans-muconic acid; AAMA, N-acetyl-S-(2-carba
moylethyl)-L-cysteine; AMCC, N-acetyl-S-(N-methylcarbamoyl)-l-cysteine; CYMA, N-acetyl-S-(2-cyanoethyl)-L-cysteine; BPMA, N-acetyl-S-(n-propyl)-L-cysteine; 2- 
HPMA, N-acetyl-S-(2-hydroxypropyl)-L-cysteine; TGA, Thiodiglycolic acid; PGA, Phenylglyoxylic acid; BMA, N-acetyl-S-(benzyl)-L-cysteine; 3-HPMA, N-acetyl-S- 
(3-hydroxypropyl)-L-cysteine; HPMMA, N-acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine; 2-MHA, 2-methyl hippuric acid; 3&4-MHA, 3-methylhippuric acid & 4- 
methylhippuric acid; CPMA, N-acetyl-S-(2-carboxypropyl)-L-cysteine; TTCA, (R)-2-thioxothiazolidine-4-carboxylic acid; ATCA, 2-aminothiazoline-4-carboxylic 
acid; MA, Mandelic acid; 5th, fifth percentile; 50th, fiftieth percentile; 90th, ninetieth percentile; GM, geometric mean; Mann-Whitney U tests are used to assess 
differences in VOC metabolite and metal/metalloid concentrations between children with and without growth failure.

M.-Y. Li et al.                                                                                                                                                                                                                                    Environmental Chemistry and Ecotoxicology 7 (2025) 1774–1786 

1778 



HAZ [− 0.552 (95 % CI: − 0.776, − 0.335)], respectively (p < 0.05) 
(Fig. 2A and D). The primary contributors to the joint effect on WAZ 
were TGA (28.9 %), HPMMA (26.9 %), and Pb (25.8 %) (Fig. 2B). For 
HAZ, the dominant contributors were TGA (23.5 %), Pb (17.5 %), and 
ATCA (17.4 %) (Fig. 2E). In weighted quantile sum regression models, 
the weight index was negatively associated with WAZ [− 0.371 (95 % CI: 
− 0.628, − 0.114)]) and HAZ [− 0.310 (95 % CI: − 0.574, − 0.045)], 
respectively (p < 0.05) (Fig. 2C and F). For the joint effect on WAZ, TGA 
occupied the highest weight (39.9 %), followed by HPMMA (23.3 %) 
and Pb (20.5 %) (Fig. 2C). For HAZ, TGA, Pb, and ATCA contributed 
41.5 %, 25.8 %, and 11.2 % to the total effect, respectively (Fig. 2F).

Additionally, the more flexible Bayesian kernel machine regression 
model was also used to strengthen our results. Mixtures at various per
centiles showed a negative association with WAZ and HAZ, respectively, 
compared to the median mixture (p < 0.05) (Fig. 3A and C). TGA (PIP =
0.885) and Pb (PIP = 0.822) were significant contributors to the joint 
effect on WAZ, while HPMMA (PIP = 0.828) and ATCA (PIP = 0.812) 

primarily influenced HAZ (Table S6). We also assessed the robustness of 
associations between single mixture components at different percentiles 
and child growth indicators. The negative association between TGA and 
WAZ was strengthened, while the relationship with HAZ weakened as 
other components shifted from the 25th to the 75th percentile (p < 0.05) 
(Fig. 3B and D). Consequently, exposure to a mixture of some VOCs and 
metals/metalloids was linked to adverse child growth, with 1,2-dichlo
roethane, cyanide, crotonaldehyde, and Pb being crucial factors driving 
the harmful effect.

3.5. Exploring the potential mechanisms VOCs and metals/metalloids 
exposure affecting child growth through urinary metabolomics

Of the 180 urinary metabolites detected, four screened VOC me
tabolites and metals/metalloids (i.e., TGA, HPMMA, ATCA, and Pb) 
were significantly associated with changes of 50, 56, 108, and 17 me
tabolites respectively, after adjusting for covariates (p < 0.05) (Fig. 4A). 

Fig. 1. Associations of individual VOC metabolites and metals/metalloids with WAZ (A) and HAZ (B) based on multiple linear regression models. Age sex, maternal 
education levels, passive smoking, exercise time, and sleep time are adjusted in all models. Asterisk represent a significant association existing between VOC me
tabolites and metals/metalloids and child growth indicators. Abbreviations: VOC, volatile organic compound; WAZ, weight-for-age z-scores; HAZ, height-for-age z- 
scores; DHBMA, N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine; AMCC, N-acetyl-S-(N-methylcarbamoyl)-L-cysteine; CYMA, N-acetyl-S-(2-cyanoethyl)-L-cysteine; 2- 
HPMA, N-acetyl-S-(2-hydroxypropyl)-L-cysteine; TGA, Thiodiglycolic acid; PGA, Phenylglyoxylic acid; HPMMA, N-acetyl-S-(3-hydroxypropyl-1-methyl)-L- 
cysteine; ATCA, 2-aminothiazoline-4-carboxylic acid.
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Higher exposure levels of TGA, HPMMA, and ATCA were mainly linked 
to the upregulation of amino acids and their metabolites such as gluta
mic acid, 4-acetamidobutanoic acid, N-acetyl-L-aspartic acid, and phe
nylacetylglutamine. Elevated level of Pb were linked with the 
downregulation of N6-acetyl-L-lysine levels and the upregulation of 
glutamic acid, Alpha-N-phenylacetyl-L-glutamine and Cyclo(leucyl
prolyl). In the metabolome-wide association study on child growth in
dicators, there were 62 and 60 urinary metabolites significantly 
associated with WAZ and HAZ, respectively (p < 0.05) (Fig. 4B). Besides 
3-methylpyridine, 3-methylhistidine, indole, androsterone glucuronide, 
4-pyridoxic acid, pipecolic acid, L-histidine, L-tyrosine, acetylcarnosine, 
L-acetylcarnitine, and L-carnitine, other 51 urinary metabolites also 
show a negative correlation with WAZ. L-acetylcarnitine and L-carnitine 
levels showed a significant positive correlation with HAZ, whereas the 
other 58 metabolites showed a significant negative correlation. Based on 
the meet-in-the-middle method, 56 overlapping urinary metabolites 
were identified in both metabolome-wide association study for VOC 
metabolites and metals/metalloids and metabolome-wide association 
study for child growth indicators (Fig. 4C).

Pathway enrichment analysis of overlapping urinary metabolites 
identified 17 potentially involved in the metabolic process related to 
child growth (Fig. S7). Among them, the levels of N-acetyl-L-aspartic 
acid, phenylacetylglutamine, nudifloramide, trehalose, xanthosine, 
riboflavin, folic acid, glycocholic acid, and indoleacetic acid were 
significantly elevated in children with growth failure (Fig. S8). Strong 
positive correlations between differential metabolites were observed 
(Fig. S9), and mixture analysis assessed their combined effects on child 
growth. By using the quantile g-computation regression models, each 
quartile increase in the mixture was associated with a decrease of 0.599 

points in WAZ (95 % CI: − 0.795, − 0.402), and riboflavin contributed 
the most to the mixture effect (23.5 %), followed by xanthosine (16.8 
%), trehalose (14.6 %), nudifloramide (14.6 %), phenylacetylglutamine 
(11.3 %), and folic acid (10.5 %) (p < 0.05) (Fig. 5A and B). For HAZ, 
each quartile increase in the mixture was significantly associated with a 
decrease of 0.520 points (95 % CI: − 0.730, − 0.309), and xanthosine 
(26.7 %) made the largest contribution to the association, followed by 
trehalose (20.3 %), riboflavin (14.3 %), nudifloramide (13.0 %), and 
indoleacetic acid (10.2 %) (p < 0.05) (Fig. 5D and E). In weighted 
quantile sum regression models, the weight index was negatively asso
ciated with WAZ [− 0.424 (95 % CI: − 0.744, − 0.105)]) and HAZ 
[− 0.510 (95 % CI: − 0.856, − 0.163)], respectively (p < 0.05) (Fig. 5C 
and F). For the joint effect on WAZ, xanthosine occupied the highest 
weight (35.2 %), followed by folic acid (15.6 %), trehalose (13.4 %), and 
riboflavin (11.7 %) (Fig. 5C). For HAZ, xanthosine, trehalose, indole
acetic acid, and riboflavin contributed 32.1 %, 17.1 %, 13.2 %, and 11.9 
% to the total effect, respectively (Fig. 5F). The four models shared three 
urinary metabolites: xanthosine (purine metabolism), trehalose (treha
lose degradation), and riboflavin (riboflavin metabolism) (Fig. 5G).

3.6. Mediating role of urinary metabolites

We evaluated the potential mediation effect of riboflavin, trehalose, 
and xanthosine on the associations between VOC metabolites and 
metals/metalloids and child growth indicators. Riboflavin and xantho
sine were significantly correlated with elevated levels of VOC metabo
lites and decreased child growth indicators. Specifically, riboflavin 
partially mediated the negative impacts of ATCA and TGA on growth 
indicators, with mediation proportions between 11.1 % and 12.9 % (p <

Fig. 2. Associations between a mixture of VOC metabolites and metals/metalloids and child growth indicators based on quantile g-computation regression and 
weighted quantile sum regression models. (A) Association between a mixture with WAZ based on the quantile g-computation regression model. (B) Weights of 
individual metabolites in the association between a mixture and WAZ based on the quantile g-computation regression model. (C) Association between a mixture and 
WAZ, and weights of single metabolites in the overall effect based on the weighted quantile sum regression model. (D) Association between a mixture and HAZ based 
on the quantile g-computation regression model. (E) Weights of individual metabolites in the association between a mixture and HAZ based on the quantile g- 
computation regression model. (F) Association between a mixture and HAZ and weights of single metabolites in the overall effect based on the weighted quantile sum 
regression model. Age, sex, maternal education levels, passive smoking, exercise time, and sleep time are adjusted in all models. Weights directions are restrained in 
negative directions in the weighted quantile sum regression models. Abbreviations: VOC, volatile organic compounds; WAZ, weight-for-age z-scores; HAZ, height-for- 
age z-scores; TGA, Thiodiglycolic acid; HPMMA, N-acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine; ATCA, 2-aminothiazoline-4-carboxylic acid.
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0.05) (Fig. 6A). Xanthosine partially mediated the association between 
TGA and WAZ and HAZ, with mediation proportions respectively being 
12.7 % and 12.1 % (p < 0.05) (Fig. 6B). The highest mediation ratio was 
12.9 %, linked to the role of riboflavin in the relationship between ATCA 
and WAZ (Fig. 6A). No significant mediation effects were found for the 
above metabolites on the association between Pb and HPMMA with 
growth indicators (Table S10 and S11). These results imply that 1,2- 
dichloroethane and cyanide exposure may impair child growth by 
increasing riboflavin or xanthosine, especially due to crotonaldehyde.

3.7. Stratified analysis

This study employed stratified analysis to investigate how age, sex, 
passive smoking, maternal education, exercise duration, and sleep 
duration influenced the relationship between individual VOC metabo
lites, metals/metalloids, and child growth indicators (Fig. S6). Exposure 
to VOCs primarily affected girls’ growth, while metals/metalloids 
mainly impacted boys’ growth, likely due to differing physiological 
structures and activity preferences. Older children showed increased 
sensitivity to metal/metalloid exposure, possibly due to cumulative ef
fects. Children exposed to passive smoking had a greater number of 
negatively associated VOC metabolites with growth indicators 
compared to those not exposed, highlighting the detrimental effects of 
passive smoking on growth. Notably, all VOC metabolites and metals/ 
metalloids, except TGA, were negatively associated with growth in
dicators in children of mothers with low education levels, while no such 
associations were found in children of highly educated mothers. This 
suggests that educated mothers may promote better hygiene awareness, 
reducing exposure to VOCs and metals/metalloids. However, the effects 

of exercise and sleep duration were not observed in this study.

4. Discussion

Using targeted exposure assessment and untargeted metabolomics 
analysis, this study identified and characterized associations between 
VOC and metal/metalloid exposure, perturbations of the children 
metabolome, and child growth indicators. We observed that exposure to 
VOC metabolite and metal/metalloid mixture (i.e., TGA, HPMMA, 
ATCA, Cu, Sn, and Pb) was associated with reduced child growth in
dicators. TGA, HPMMA, ATCA, and Pb played crucial roles in driving the 
exposure effects of mixture. Further metabolomics analysis revealed 
metabolic disturbances from specific VOCs and metals/metalloids 
exposure, pinpointing riboflavin, trehalose, and xanthosine as key me
tabolites in relation to adverse child growth. In addition, mediation 
analysis displayed that 1,2-dichloroethane and cyanide (the parent 
compound of TGA and ATCA, respectively) exposure may impair child 
growth by increasing riboflavin and xanthosine levels. Altogether, our 
research unveiled the detrimental effects and potential mechanisms of 
specific VOCs and metals/metalloids on child growth in the electronic 
waste recycling area, underscoring the urgent need to mitigate these 
pollutants during electronic waste recycling to safeguard child health.

Most population-based exposome studies have focused on the effects 
of a single environmental pollutant [36]. However, humans are exposed 
to multiple chemicals simultaneously, and models concentrating on a 
single pollutant may mislead exposure-outcome interpretation [37]. 
This study used mixture analysis models to investigate the joint effects of 
VOCs and metals/metalloids on child growth, offering a valuable 
reference for future research. We also observed that a single pollutant 

Fig. 3. Associations between a mixture of VOC metabolites and metals/metalloids and child growth indicators based on Bayesian kernel machine regression model. 
(A) Estimated changes of the association between a mixture and WAZ when the mixture is set at different percentiles compared to the 50th percentile. (B) Estimated 
changes of the association between single metabolites and WAZ when the other metabolites are fixed at either the 25th (red line), 50th (green line), or 75th per
centiles (blue line). (C) Estimated changes of the association between a mixture and HAZ when the mixture is set at different percentiles compared to the 50th 
percentile. (D) Estimated changes of the association between single metabolites and HAZ when the other metabolites are fixed at either the 25th (red line), 50th 
(green line), or 75th percentiles (blue line). Age, sex, maternal education levels, passive smoking, exercise time, and sleep time are adjusted in all models. Ab
breviations: VOC, volatile organic compounds; WAZ, weight-for-age z-scores; HAZ, height-for-age z-scores; TGA, Thiodiglycolic acid; HPMMA, N-acetyl-S-(3- 
hydroxypropyl-1-methyl)-L-cysteine; ATCA, 2-aminothiazoline-4-carboxylic acid. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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metabolite, HPMMA, exhibited varying contributions across different 
mixture models (Bayesian kernel machine regression vs. weighted 
quantile sum). This highlights the limitations of relying on single 
mixture analysis for identifying key pollutants, suggesting that 
combining multiple models may yield a more reliable result [38]. Thus, 
combining quantile g-computation regression, weighted quantile sum 
regression, and Bayesian kernel machine regression models, we syn
thetically identified Pb, 1,2-dichloroethane, cyanide, and crotonalde
hyde as the main pollutants affecting child growth in electronic waste 
recycling areas.

Our findings on the association between Pb exposure and the adverse 
growth of children in the electronic waste recycling area are in line with 
several studies. In the INMA-Asturias cohort, exposure to a urinary 
metals/metalloids mixture was significantly related to reduced child
hood height, with Pb being the primary contributor to the joint effect 

[39]. In rural Bangladesh, boys (n = 800) showed a decrease of 
approximately 0.085 in growth indicators as urinary Pb levels elevated 
from 1.90 μg/L to 3.80 μg/L [40]. However, other studies, including the 
Maternal-Infant Research on Environmental Chemicals Child Develop
ment Plus study and the US National Toxicology Program, did not find 
similar effects [21,41]. Variations in environmental exposure may 
explain these discrepancies. Previous studies have elucidated several 
cellular and molecular mechanisms by which Pb exposure affects child 
growth. Evidence suggests that Pb negatively impacts the function of 
osteoblasts and osteoclasts, essential for bone growth, by altering 
circulating hormone levels such as 1,25-dihydroxy vitamin D3 [42]. 
Additionally, Pb can inhibit the absorption of zinc and iron, contributing 
to deficiencies during critical growth periods in children [42]. An ani
mal study found decreased expression of insulin-like growth factors 1 
and 2 in Pb-exposed mice, although this pathway requires further 

Fig. 4. Metabolome-wide association study on urinary VOC metabolites and metals/metalloids and child growth indicators (WAZ/HAZ). (A) Associations between 
VOC metabolites and metals/metalloids and urinary metabolites, analyzed by multiple linear regression models. The x-axis shows the estimated changes of the 
association between VOC metabolites and metals/metalloids and urinary metabolites, and the y-axis shows its value of − log10 (p-value). The significance p-value 
threshold of 0.05 is shown as a red dashed line. Exact p-values and regression coefficients of overlapping urinary metabolites are provided in Table S8. (B) Asso
ciations between urinary metabolites and WAZ/HAZ, analyzed by multiple linear regression models. The x-axis shows the estimated changes of the association 
between urinary metabolites and WAZ/HAZ, and the y-axis shows its value of − log10 (p-value). The significance p-value threshold of 0.05 is shown as a red dashed 
line. Exact p-values and regression coefficients of overlapping urinary metabolites are provided in Table S9. Different-colored dots represent different types of 
metabolites. Age, sex, maternal education levels, passive smoking, exercise time, and sleep time are adjusted in all models. (C) Overlapping urinary metabolites that 
are significantly associated with VOC metabolites and metals/metalloids and growth indicators. *p < 0.05. Red and blue solid rectangles circular heatmap of 
respectively represent significant and insignificant associations. Full name and case number of urinary metabolites are provided in Table S7. Abbreviations: VOC, 
volatile organic compounds; WAZ, weight-for-age z-scores; HAZ, height-for-age z-scores; TGA, Thiodiglycolic acid; HPMMA, N-acetyl-S-(3-hydroxypropyl-1-methyl)- 
L-cysteine; ATCA, 2-aminothiazoline-4-carboxylic acid; BSD, Benzene and substituted derivatives; CAD, Carboxylic acids and derivatives; FA, Fatty Acyls; IP, Imi
dazopyrimidines; OC, Organooxygen compounds; PN, Purine nucleosides; PD, Pyridines and derivatives; SSD, Steroids and steroid derivatives; ID, Indoles and 
derivatives. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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exploration in epidemiological research [43].
Research on the impact of VOC exposure on child growth is limited. 

Our study revealed negative associations between urinary metabolites of 
1,2-dichloroethane, cyanide, and crotonaldehyde and child growth in
dicators, differing from findings in adults. A study of 17,524 adults using 
data from six National Health and Nutrition Examination Survey cycles 
(2005–2006, 2011–2012, 2013–2014, 2015–2016, 2017–2018, and 
2017–2020) suggested that exposure to crotonaldehyde and cyanide 
may be linked to obesity [44]. Similarly, the Korean National Environ
mental Health Survey program (2015–2017) (n = 3787) found that the 
benzene metabolite t,t-MA was linked to increased adult BMI [45]. In
verse effects may be derived from variations in physiological traits, 

metabolic processes, and lifestyle factors [46]. Children’s higher basal 
metabolic rate may make their organs, particularly the gut, more sus
ceptible to VOC-induced changes, potentially leading to decreased food 
intake [47]. In contrast, unhealthy eating patterns may cause weight 
gain in exposed adults [48]. Although an animal study suggests VOC 
exposure might increase beneficial gut bacteria that counteract glyco
lipids [49], potentially influencing weight regulation, the significant 
variation in gut microbiota driven by individual diet means this poten
tial pathway requires further validation [50].

Following the urine metabolomics analysis, we found that riboflavin 
metabolism, trehalose degradation, and purine metabolism may be 
involved in VOCs and metals/metalloids-induced poor child growth 

Fig. 5. Joint effects of urinary differential metabolites on child growth indicators and identification of dominate contributors. (A) Association between a mixture 
with WAZ based on the quantile g-computation regression model. (B) Weights of individual metabolites in the association between a mixture and WAZ based on the 
quantile g-computation regression model. (C) Association between a mixture and WAZ, and weights of single metabolites in the overall effect based on the weighted 
quantile sum regression model. (D) Association between a mixture and HAZ based on the quantile g-computation regression model. (E) Weights of individual 
metabolites in the association between a mixture and HAZ based on the quantile g-computation regression model. (F) Association between a mixture and HAZ and 
weights of single metabolites in the overall effect based on the weighted quantile sum regression model. (G) Common urinary metabolites with weights greater than 
0.1 and their involved metabolic pathways in all mixture analysis models. Age, sex, maternal education levels, passive smoking, exercise time, and sleep time are 
adjusted in all models. Weights directions are restrained in negative directions in the weighted quantile sum regression models. Abbreviations: WAZ, weight-for-age 
z-scores; HAZ, height-for-age z-score.
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effect. A recent study based on the South East Asian Nutrition Surveys (n 
= 1383) observed an increased risk of overweight or abdominal obesity 
in children with lower daily intake of riboflavin [51]. Similar negative 
associations also exist between riboflavin intake and BMI and trunk fat 
mass in 1131 Mexican American children [52]. These associations may 
stem from riboflavin’s role in regulating energy balance, potentially 
prioritizing energy expenditure towards central nervous system devel
opment over growth [53]. While epidemiological studies on trehalose’s 
effects on child growth are limited, existing evidence indicates it can 
alter gut microbiota homeostasis, which is vital for neonatal metabolic 
balance and development [54,55]. For instance, trehalose can enhance 
microbial short-chain fatty acid production, benefiting the regulation of 
metabolic disorders like obesity and diabetes [54,56]. Furthermore, by 
fostering beneficial gut bacteria, trehalose can indirectly promote he
patic lipid metabolism [57]. Prior research suggested a link between 
hair heavy metal, purine metabolism involving xanthosine, and child 
adverse growth [23]. Another placental multi-omics analysis has also 
identified xanthosine as a crucial molecular marker in fetal growth and 
development [58].

In this study, riboflavin and xanthosine partially mediated the in
verse association between specific VOC metabolites and child growth 
indicators. Given that riboflavin and xanthosine levels were elevated in 
the urine of children with growth failure, we hypothesize that VOC 
exposure may impair growth by increasing riboflavin and xanthosine. 
Trehalose did not act as a mediator, suggesting its biological role is 
complex and potentially regulated by multiple factors [59]. Intricate 
signaling pathways or feedback loops may obscure its mediatory func
tion [59]. Taken together, riboflavin, xanthosine, and trehalose as the 
metabolic signatures of VOC and metal/metalloid exposure might play a 
significant role in the etiology of poor child growth in electronic waste 
recycling areas.

This study has several strengths. Firstly, the electronic waste 
dismantling process releases various pollutants, creating a realistic 
exposure scenario. Secondly, we examined the joint effects of multiple 

VOCs and metals/metalloids on child growth using mixture analysis 
models with the identification of key VOCs and metals/metalloids. 
Lastly, we highlighted the important role of urinary metabolites in the 
relationship between VOC and metal/metalloid exposure and child 
growth, enhancing our understanding of these adverse effects. However, 
some limitations in this study need to be indicated. Firstly, it did not 
establish a causal association between exposure to a mixture of VOCs 
and metals/metalloids and child growth, as it is a cross-sectional 
investigation. Additionally, although numerous confounders were 
adjusted in our statistical modeling, some potentially important factors, 
such as individual nutritional information and parental growth status, 
were not captured in our questionnaire and may impact the reliability of 
our findings.

5. Conclusions

In summary, our research indicates that individual and combined 
exposure to VOCs and metals/metalloids, specifically including 1,2- 
dichloroethane, crotonaldehyde, cyanide, and Pb, may negatively 
impact child growth. Metabolomics analysis suggests that perturbed 
riboflavin, trehalose, and xanthosine by the above key VOC and metals/ 
metalloid exposure may play important roles in contributing to impaired 
child growth. Further research is needed to confirm our findings, 
elucidate metabolic mechanisms, and evaluate biomarkers for predict
ing and preventing the negative impact of environmental pollution from 
electronic waste recycling on child growth.
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Dehli, J.O. Grimalt, E. Junqué, A. Fernández Somoano, A. Tardón, Exposure to 
metal mixture and growth indicators at 4–5 years. A study in the INMA-Asturias 
cohort, Environ. Res. 204 (2022) 112375.

[40] A. Malin Igra, A. Warnqvist, S.M. Rahman, E.C. Ekström, A. Rahman, M. Vahter, 
M. Kippler, Environmental metal exposure and growth to 10 years of age in a 
longitudinal mother–child cohort in rural Bangladesh, Environ. Int. 156 (2021) 
106738.

M.-Y. Li et al.                                                                                                                                                                                                                                    Environmental Chemistry and Ecotoxicology 7 (2025) 1774–1786 

1785 

https://doi.org/10.1016/j.enceco.2025.08.012
https://doi.org/10.1016/j.enceco.2025.08.012
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0005
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0005
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0010
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0010
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0010
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0010
https://ewastemonitor.info/wp-content/uploads/2024/03/GEM_2024_18-03_web_page_per_page_web.pdf
https://ewastemonitor.info/wp-content/uploads/2024/03/GEM_2024_18-03_web_page_per_page_web.pdf
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0020
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0020
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0020
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0025
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0025
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0025
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0030
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0030
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0030
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0035
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0035
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0035
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0035
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0035
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0040
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0040
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0040
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0040
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0045
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0045
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0045
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0050
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0050
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0050
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0055
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0055
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0060
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0060
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0060
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0065
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0065
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0065
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0065
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0070
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0070
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0070
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0075
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0075
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0075
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0080
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0080
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0080
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0080
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0085
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0085
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0085
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0085
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0090
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0090
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0090
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0090
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0090
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0095
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0095
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0095
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0100
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0100
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0100
https://ntp.niehs.nih.gov/sites/default/files/ntp/ohat/lead/final/appendicesathrue_final_508.pdf
https://ntp.niehs.nih.gov/sites/default/files/ntp/ohat/lead/final/appendicesathrue_final_508.pdf
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0105
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0105
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0105
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0105
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0110
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0110
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0110
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0115
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0115
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0115
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0115
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0120
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0120
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0120
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0125
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0125
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0125
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0130
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0130
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0130
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0130
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0135
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0135
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0135
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0135
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0135
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0140
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0140
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0145
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0145
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0145
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0145
https://www.cdc.gov/growthcharts/cdc-data-files.htm
https://www.who.int/news-room/questions-and-answers/item/child-growth-standards
https://www.who.int/news-room/questions-and-answers/item/child-growth-standards
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0160
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0160
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0160
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0165
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0165
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0165
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0170
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0170
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0175
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0175
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0175
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0180
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0180
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0180
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0185
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0185
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0185
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0185
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0190
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0190
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0190
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0190
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0195
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0195
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0195
http://refhub.elsevier.com/S2590-1826(25)00131-6/rf0195


[41] J. Ashley Martin, L. Dodds, T.E. Arbuckle, B. Lanphear, G. Muckle, M.F. Bouchard, 
M. Fisher, E. Asztalos, W. Foster, S. Kuhle, Blood metal levels and early childhood 
anthropometric measures in a cohort of Canadian children, Environ. Res. 179 
(2019) 108736.

[42] S. Talpur, H.I. Afridi, T.G. Kazi, F.N. Talpur, Interaction of Lead with calcium, Iron, 
and zinc in the biological samples of malnourished children, Biol. Trace Elem. Res. 
183 (2) (2018) 209–217.

[43] N. Li, G.M. Zhao, M.W. Qiao, J.F. Shao, X.Z. Liu, H.Z. Li, X. Li, Z.L. Yu, The effects 
of early life lead exposure on the expression of insulin-like growth factor 1 and 2 
(IGF1, IGF2) in the hippocampus of mouse pups, Food Chem. Toxicol. 63 (2014) 
48–52.

[44] T. Lei, H. Qian, J.X. Yang, Y.H. Hu, The association analysis between exposure to 
volatile organic chemicals and obesity in the general USA population: a cross- 
sectional study from NHANES program, Chemosphere 315 (2023) 137738.

[45] I. Lee, H. Park, M. Kim, Joo, S. Kim, S. Choi, J. Park, Y. Cho, Hee, S. Hong, J. Yoo, 
G. Cheon, Jeong, K. Choi, Y. Park, Joo, M. Moon, Kyong, Exposure to polycyclic 
aromatic hydrocarbons and volatile organic compounds is associated with a risk of 
obesity and diabetes mellitus among Korean adults: Korean National 
Environmental Health Survey (KoNEHS) 2015–2017, Int. J. Hyg. Environ. Health 
240 (2022) 113886.

[46] K. Sexton, J.L. Adgate, T.R. Church, D.L. Ashley, L.L. Needham, G. Ramachandran, 
A.L. Fredrickson, A.D. Ryan, Children’s exposure to volatile organic compounds as 
determined by longitudinal measurements in blood, Environ. Health Perspect. 113 
(3) (2005) 342–349.

[47] A. Smolinska, A.G.L. Bodelier, J.W. Dallinga, A.A.M. Masclee, D.M. Jonkers, F. 
J. van Schooten, M.J. Pierik, The potential of volatile organic compounds for the 
detection of active disease in patients with ulcerative colitis, Aliment. Pharmacol. 
Ther. 45 (9) (2017) 1244–1254.

[48] D.W. Zhang, Z.Y. Yan, J.H. He, Y.M. Yao, K. Liu, The exposure to volatile organic 
compounds associate positively with overactive bladder risk in U.S. adults: a cross- 
sectional study of 2007–2020 NHANES, Front. Public Health 12 (2024) 1374959.

[49] N.F. Tan, M.J. Zhao, Z.S. Luo, Z.B. Li, X.N. Zhang, J.Y. Xu, X.Y. Gu, Q. Wang, 
S. Ding, M. Ying, Y. Xu, Linalool as a key component in strawberry volatile organic 
compounds (VOCs) modulates gut microbiota, systemic inflammation, and 
glucolipid metabolism, Food Chem. 460 (2024) 140361.
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