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A B S T R A C T

In the context of pandemic viruses and pathogenic bacteria, triclosan (TCS), as a typical antibacterial agent, is
widely used around the world. However, the health risks from TCS increase with exposure, and it is widespread
in environmental and human samples. Notably, environmental transformation and human metabolism could
induce potentially undesirable risks to humans, rather than simple decontamination or detoxification. This re-
view summarizes the environmental and human exposure to TCS covering from 2004 to 2023. Particularly,
health impacts from the environmental and metabolic transformation of TCS are emphasized. Environmental
transformations aimed at decontamination are recognized to form carcinogenic products such as dioxins, and
ultraviolet light and excessive active chlorine can promote the formation of these dioxin congeners, potentially
threatening environmental and human health. Although TCS can be rapidly metabolized for detoxification, these
processes can induce the formation of lipophilic ether metabolic analogs via cytochrome P450 catalysis, causing
possible adverse cross-talk reactions in human metabolic disorders. Accordingly, TCS may be more harmful in
environmental transformation and human metabolism. In particular, TCS can stimulate the transmission of
antibiotic resistance even at trace levels, threatening public health. Considering these accruing epidemiological
and toxicological studies indicating the multiple adverse health outcomes of TCS, we call on environmental
toxicologists to pay more attention to the toxicity evolution of TCS during environmental transformation and
human metabolism.

1. Introduction

There is a global increase in the production and utilization of anti-
bacterial agents, especially in the context of pandemic viruses and
pathogenic bacteria (Amigun Taiwo et al. 2022; Dhama et al. 2021).
Triclosan [5-chloro-2-(2,4-dichlorophenoxy)phenol], (TCS), as a repre-
sentative broad-spectrum antimicrobial agent, can effectively inhibit the
activity of bacteria, fungi, and viruses. TCS has been used for about 55
years and added to over 2,000 products, such as personal care products,
medical supplies, and household goods (Halden Rolf et al. 2017;
Rodricks et al. 2010). Global annual TCS production increased from
1,500 tons in 1998 to 4,762 tons in 2015 (Dar et al. 2022), with the USA

consuming 132 million liters of TCS-containing products annually
(Alfhili and Lee 2019). Humans are continuously exposed to TCS, pri-
marily through skin/oral pathways (Rodrickset al. 2010), and the per
capita consumption is approximately 1.3 mg/person/day (Zhao et al.
2013). In particular, the use of TCS increased significantly through the
widespread use of hand sanitizer following the COVID-19 pandemic
outbreak (Wang et al. 2022). Accordingly, the estimated maximum TCS
intake in children increased to 2.791 mg/kg/day, significantly higher
than the 0.3 mg/kg/day permitted daily dosage for adults from the
United States Environmental Protection Agency (US EPA) (Wanget al.
2022). Alarmingly, increasing amounts of TCS are released into the
environment, potentially causing harm to both the environment and
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human health (Capdevielle et al. 2008; Milanović et al. 2023).
Although TCS-containing toothpaste can reduce plaque and gingi-

vitis, the scientists have voiced concerns about the potential hazards of
TCS use (Halden Rolfet al. 2017). Toxicological studies have shown that
TCS causes adverse effects on reproduction, the endocrine system, the
immune system, and muscle function, as well as genetic toxicity in
aquatic organisms and higher vertebrates (Dhillon et al. 2015; Maharana
et al. 2015; Solá-Gutiérrez et al. 2018). TCS can also accelerate the
spread of antibiotic-resistance genes in the environmental microbiome,
potentially causing severe public health concerns (Lu et al. 2022).
Therefore, many countries have established regulations on TCS. In 2017,
the European Commission banned TCS in human hygiene products
(Zhang et al. 2019) and over-the-counter hand and body washes were
prohibited by the United States Food and Drug Administration (FDA) in
2016 and 2017 (Skarha et al. 2019).

Antibacterial agents and antiseptic wash products are essential to
control and prevent the spread of highly contagious viruses (Laue et al.
2024; Mukherjee et al. 2021). However, the overuse and disposal of TCS-
containing disinfectants have raised concerns about adverse environ-
mental and human health effects (Dhamaet al. 2021). A number of re-
views on the occurrence, exposure, and toxicity of TCS in the
environment and in humans have been published, providing crucial
information on human exposure and toxicity (Daret al. 2022; Lee et al.
2024; Rehman et al. 2021). However, the potentially increase in toxicity
during the transformation and metabolism of TCS can induce more
adverse health effects (Ashrap et al. 2017; Zheng et al. 2008) and TCS
toxicity evolution during environmental transformation and human
metabolism has not been summarized. Hence, this review mainly
focused on the environmental and health effects of TCS exposure,

particularly health concerns during its environmental transformation
and human metabolism. Moreover, potential diseases involving TCS
exposure were also summarized based on toxicological and epidemio-
logic studies. This review will further understanding of the potential
adverse effects of TCS on human health during environmental occur-
rence, transformation, and human metabolism.

2. Methodology and bibliometric analysis

A systematic search was performed using the Web of Science core
collection database from 2004 to 2023 (last search date 19 April 2024).
The following search terms were used: “triclosan” AND “exposure* or
human health or health effect*” AND “metaboli* or transformation or
conversation or *degradation or photolysis or product*” AND “toxic* or
adverse effect.*” Document types, such as books, patents, conference
papers, meeting abstracts, case reports, dissertation theses, and correc-
tion additions, were excluded from this review. A total of 659 papers
written in English were identified.

The number of papers on this topic has increased dramatically in 20
years (Fig. 1A). The major keywords and similarities of all papers were
identified through network analysis using VOS viewer software (version
1.6.18.0). A total of 3,546 keywords and 52 keywords met the criteria
(occurring more than 20 times). These keywords were grouped into five
clusters (Fig. 1B), and the top five keywords in each cluster are listed in
Fig. 1C. The listed keywords are mainly related to similar contaminants
(Group 1), sample types (Group 2), transformation (Group 3), and
adverse effects (Group 4). Accordingly, all publications were further
split into four categories: exposure, transformation and metabolism,
toxicology, and toxicity evolution. Most studies (42 %) focused on the

Fig. 1. (A) The number of published papers per year from 2004 to 2023. (B) The percentage of papers by category. (C) Network analysis of keywords from retrieved
papers. (D) Top five keywords in the four clusters. (E) Keyword groupings (represented by symbols: ▾◆■▴).
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toxicological study of TCS. In contrast, studies regarding the “toxicity
evolution” of TCS accounted for only 19 % (Fig. 1D), indicating that
more attention should be paid to this field in the future.

3. Environmental and human exposure

Humans are mainly exposed to TCS through dermal absorption from
TCS-containing personal care products (Ao et al. 2017). Drinking water,
food, dust, and the atmosphere can also be sources of human exposure to
TCS (Weatherly and Gosse 2017), which are summarized in Table S1.
The global concentration of TCS in surface water ranges from 1 to
40,000 ng/L (Daret al. 2022). Wastewater treatment plants (WWTPs)
are important control measures to prevent TCS from polluting the
environment. However, TCS cannot be removed entirely from WWTPs,
which are one of the major sources of surface water pollution (Kumar
et al. 2010; Montaseri and Forbes 2016). Furthermore, the resulting
solid waste from WWTPs could become recurring biosolids; the agri-
cultural availability of these biosolids containing TCS presents a po-
tential risk for human dietary exposure via ingestion of agricultural
products (Dhillonet al. 2015). TCS can be further incorporated into crop
plants (such as carrots and soybeans) via sewage sludge application
(Macherius et al. 2012; Wu et al. 2010). The presence of TCS in indoor
air has received limited attention, because TCS with low volatility in the
atmosphere is nearly undetectable (Aoet al. 2017; Canosa et al. 2007;
Fan et al. 2010; Geens et al. 2009). However, TCS as a relatively lipo-
philic compound can be absorbed in airborne particulate matter, which
has been detected in numerous sites including offices, apartments, day
nurseries, and houses (Laborie et al. 2016), and is also present in settled
dust from kitchens, bedrooms, and living rooms (Tran et al. 2020).
Despite the relatively low human health risk from TCS from these
sources, a more comprehensive risk assessment based on the multiple
exposure pathways of TCS is needed (Zhang and Lu 2023).

TCS has been found in human urine, breast milk, blood, and nails
(Chen et al. 2023; Sandborgh-Englund et al. 2006), including adipose
tissue, cord blood, and amniotic fluid from clinical specimens (Goodman
et al. 2018). Table S2 summarizes the concentrations of TCS in various
human biological samples. Differences in TCS concentrations may be
due to consumer product consumptions, behavioral, and dietary pat-
terns (Kim et al. 2020): lifestyles vary in different regions, especially the
usage habits of TCS-containing cosmetics. A global analysis of urine
samples found that TCS exposure is significantly higher in high-income
regions than in developing regions (Zhang and Lu 2023). However,
taking age into account, among Korean adults aged 18–69 years, the
urinary TCS concentration was highest in participants aged 60–69 years
(2.2 × 103 ng/L) (Kim et al. 2011). In Belgium, the urinary TCS con-
centration of participants aged 20–39 years (range from 1.86-598.95 ×

103 ng/L) (Pirard et al. 2012). Regarding gender, females are the major
consumers of personal care products, and they are potentially the high-
exposure population. In fingernail samples from China, TCS levels were
higher in females than in males (Yin et al. 2016). However, in a survey
on blood serum TCS concentrations from an Australian population,
males had significantly higher concentrations than the females (Allmyr
et al. 2008). These conflicting results suggest that population-based re-
ports exploring potential factors influencing TCS exposure should be
studied in greater depth, including sex, age, living habits, and socio-
economic status.

Furthermore, pregnant and lactating women with physiological and
metabolic changes are special populations closely related to fetal and
infant exposure, vital to their development. TCS was first detected in
breast milk in Sweden in 2002, and in three out of five samples ranged
from < 20 ng/g to 300 ng/g (Adolfsson-Erici et al. 2002). Breast milk
from 36 mothers was tested in Stockholm, with TCS concentrations of
0.95 ng/g in the exposed groups compared with 0.35 ng/g in the control
group (Allmyr et al. 2006). In California and Texas, TCS concentrations
in breast milk from 62 samples ranged from 0 to 2,100 ng/g (Dayan
2007). Notably, exclusively breast-fed infants excreted higher amounts

of TCS with infants in whom a mixed diet was introduced, which might
be attributed to the transmission of TCS to infants through breastfeeding
from exposed mothers (Frederiksen et al. 2022). However, there is a
6,500-fold safety margin between the exposure levels obtained in
correlative studies and the maximum TCS concentration, inducing any
adverse effects on humans (Dann and Hontela 2011). Therefore, there is
no definite evidence that the small amounts of TCS in breast milk pose
risks for infants. Notably, the limited studies have reported that the
concentration level of TCS in pregnancy urine is associated with
decreased birth weight of born babies (Patti et al. 2021). Therefore,
given that these susceptible populations might be influenced by adverse
effects of TCS exposure, additional studies are needed to elucidate the
link between exposure and potential human health outcomes. Moreover,
TCS metabolism can influence TCS exposure, triggering a potentially
synergistic exposure of TCS and its metabolites in humans. Concerning
these potential risks, the toxicity of TCS in the process of metabolic
transformation needs to be critically determined.

4. Toxicity in metabolism and environmental transformation

TCS in the environment can be gradually removed by photo-
degradation and biodegradation (Amigun Taiwoet al. 2022). Several
toxic products are formed during the transformation of TCS, such as the
formation of dioxin analogs under ultraviolet irradiation and methyl-
TCS generated from aerobic digestion. These products can migrate
into the environment, where humans could be exposed to them. Addi-
tionally, TCS and its products enter the human body through various
exposure pathways, including oral mucosa, respiratory tract, digestive
tract, and skin (Ashrapet al. 2017). These synergistic processes result in
potentially adverse effects on organisms and human health (Cochran
et al. 2024; Gao et al. 2021). Therefore, this section summarizes the
toxicity evolution of TCS in metabolism and environmental trans-
formations to uncover the potential harm to humans.

4.1. Toxicity in human metabolism

TCS is considered non-persistent in the body and can be quickly
absorbed, metabolized, and eliminated (Goodmanet al. 2018). A human
pharmacokinetic study found that the plasma concentration of TCS
rapidly increased after ingestion of an oral solution containing 4 mg
TCS, peaked within 1–3 h, and was excreted within hours (Sandborgh-
Englundet al. 2006). Further, an statistical study has shown that the half-
life of TCS in plasma is 10–15 h for rats, 8–12 h for mice, and 25–32 h for
hamsters, while in humans, the metabolic half-life is 13–16 h for chil-
dren and 15–29 h for adults (Bagley and Lin 2000; Bedoux et al. 2012;
DeSalva et al. 1989; Siddiqui and Buttar 1979). These results suggest the
metabolism of TCS in organisms and the metabolic cycle of TCS is spe-
cies dependent. Although TCS can be gradually eliminated by the human
body, it also slightly accumulates in organs through blood circulation
(Milanovićet al. 2023).

Evidence from 11 patients showed that TCS could be detected in the
liver and adipose during the autopsy, with the highest concentration in
the liver (3.14 ng/g) (Geens et al. 2012). The liver is the primary source
of TCS metabolism, and these complex processes require the combined
action of multiple enzymes, especially the cytochrome P450 enzyme
system (CYP450) (Weatherly and Gosse 2017). CYP450 is a large family
of heme-oxidized proteins of the monooxygenases, which play a crucial
role in various physiological pathways such as synthesis and metabolism
(Guengerich 2017). TCS can perform the hydroxylation and cleavage of
the ether bond under CYP450metabolism (Wu et al. 2017), part of phase
I metabolism. The main metabolites of TCS, including multiple hy-
droxylated TCS, 2,4-dichlorophenol, and 4-chlorocatechol (Fang et al.
2010; Fang et al. 2014; Zhu et al. 2018), have been detected in mouse
liver, bile, and feces, as well as plasma and urine, hydroxylated TCS was
also identified in human feces samples (Zhang et al. 2021b). Notably,
chlorophenols are catalogued as one of the priority pollutants according
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to the US EPA because of their toxicity and potential carcinogenicity
(Ferreiro et al. 2021). Moreover, hydroxylated TCS is recognized as a
reactive metabolite (Liu et al. 2020), and its toxicity should be taken
seriously (Zhanget al. 2021b). These metabolites can be covalently
modified on multiple proteins, including hormone response (ten pro-
teins), immune system process (eight proteins), and inflammatory
response (seven proteins), suggesting endocrine and immune systems
may be disrupted (Liuet al. 2020).

Furthermore, TCS also can produce TCS-O-TCS through the phase I
metabolic CYP450 in perch, quail, mice, and human microsomes. The
lipophilic metabolite TCS-O-TCS has been detected in urine samples
from the general population (Ashrapet al. 2017). Meanwhile, some new
lipophilic ether metabolic analogs, including TCS-O-bisphenol A, TCS-
O-benzo(a)pyrene, and TCS-O-estradiol, have been found in mice and
humans, formed by the reaction of TCS and other substances (such as
phenolic xenobiotics and endogenous metabolites) via CYP450 catalysis
(Ashrapet al. 2017; Liu et al. 2022). This mentioned metabolic reaction
is a widespread pathway for TCS, inducing possible adverse cross-talk
reactions in organisms. The hepatocarcinogenic potential of TCS is
related to the activation of the constitutive androstane receptor (CAR)
(Yueh et al. 2014). Alarmingly, these above-mentioned lipophilic ether
metabolites may exhibit higher biological activity than the parent
compounds. The CAR activity of TCS-O-TCS is about 7.2 times higher
than that of TCS (Ashrapet al. 2017), potentially interfering with the
metabolism of other carcinogens (such as diethylnitrosamine) and
increasing the susceptibility to tumorigenesis (Yuehet al. 2014). These
lipophilic ether metabolites can also affect metabolic toxicity, signifi-
cantly reducing the levels of endogenous vitamin E and disturbing
endocrine homeostasis (Liuet al. 2022). Furthermore, the increase of
reactive oxygen species (ROS) levels during TCS metabolism can exac-
erbate the downregulation of endogenous antioxidants and lipid per-
oxidation, posing considerable risks to human health (Peng et al. 2019).

TCS and hydroxylated TCS can undergo phase II metabolism via
glucuronidation and sulfonation (Zhanget al. 2021b). These metabolites
have been widely detected in human HepG2 cells (Wuet al. 2017), liver
microsomes or cytosol (Wang et al. 2004), urine (Provencher et al.
2014), serum (Zhanget al. 2021b), and skin (Fanget al. 2014). In human
liver, TCS-glucuronide was the main metabolite at 20 μM exposure dose,
while exposure to dose below 1 µM led to sulfonation, generating TCS-
sulfate (Penget al. 2019). Therefore, human exposure to TCS might
interfere with major metabolic pathways. Compared with the human

liver, human skin has a low ability to metabolize TCS: in 24 h, the skin
metabolized approximately 3 % of TCS exposure dose, and TCS-sulfate
was the only metabolite in the skin up to 8 h after application
(Fanget al. 2014). However, TCS-glucuronide is excreted faster from
HepG2 cells than TCS-sulfate (Zhanget al. 2019), and the metabolites of
TCS-glucuronide and TCS-sulfate have more polarity, thus enhancing
their water solubility, and therefore excretion (Weatherly and Gosse
2017). However, one concern about these metabolites is the potential
regeneration from circulating the conjugates to TCS and hydroxylated
TCS, due to deconjugation enzymes (Ginsberg and Rice Deborah 2009).
Another concern is that intestinal flora affects the conversion of these
metabolites into free TCS (Zhang et al. 2022). Potential reabsorption of
TCS and hydroxylated TCS would occur by the liver, in a process known
as “enterohepatic circulation,” delaying the elimination of toxicants
from the body (Claus et al. 2016).

Overall, TCS undergoes metabolize during phase I and II metabolism
and forms more polar metabolites. The metabolic mechanism of TCS is
summarized in Fig. 2. The toxicological effects of metabolites generated
from phase I metabolism are greater than those from phase II meta-
bolism. Notably, the disruption of endogenous metabolite homeostasis
by CYP450 catalysis should be studied in the future as it implies a dis-
order of the metabolic system, posing a potential risk to human health.

4.2. Toxicity in environmental transformation

In the environment, TCS can be converted into various degradation
products via biotransformation, photolysis, oxidation, and chlorination,
as summarized in Fig. 3. During photodegradation of TCS in aquatic
environments, one of the main products from TCS cyclization is 2,8-
dichlorodibenzo-P-dioxin (2,8-DCDD) (Gao et al. 2014; Mezcua et al.
2004; Sanchez-Prado et al. 2006). Significantly, in excessive active
chlorine (such as disinfection and seawater environments), TCS can be
transformed into more dioxin congeners via cyclization after TCS chlo-
rination, including 1,2,8-TCDD, 2,3,7-TCDD, 1,2,3,8-TCDD, and 2,3,7,8-
TCDD (Buth et al. 2009; Wu et al. 2019). Ultraviolet light can also
promote the formation of these dioxin congeners (Wuet al. 2019). Once
dioxin congeners in the environment enter the body, they are stored due
to their chemical stability and last a long time (Buth et al. 2010). Dioxin
is a potent multisite carcinogen (Zhenget al. 2008), with chronic expo-
sure causing several types of cancer in animals (Berg 2006). Exposure to
dioxin congeners causes severe damage to human beings and animals,

Fig. 2. Metabolic mechanism of triclosan.

N. Luo et al.



Environment International 190 (2024) 108927

5

inducing disruption of the nervous, immune, reproductive, and endo-
crine systems (Marinković et al. 2010; Neel and Sargis 2011).

Furthermore, under conditions of sunlight or chlorination, TCS can
also transform to produce toxic substances, such as 2,4-dichlorophenol
and 2,4,6-trichlorophenol (Solá-Gutiérrez et al. 2020). 2,4-dichlorophe-
nol is formed from the cleavage of the ether link in TCS and then un-
dergoes chlorination of the phenolic ring to form 2,4,6-trichlorophenol
(Iovino et al. 2019). Both are known endocrine disruptors that poten-
tially cause cancer, congenital disabilities, and developmental diseases,
and have been flagged as priority pollutants in the USA (Dann and
Hontela 2011). TCS also reacts with free chlorine to produce chloroform,
which might happen in the processes in household dish soap usage (Tsai
et al. 2008). Chloroform has been linked to liver and kidney toxicity and
mild teratogenicity (Fiss et al. 2007). It is worth noting that the chlo-
rinated derivatives of TCS are significantly more toxic than TCS itself,
and these chlorinated derivatives are often precursors of dioxins (Fig. 3)
(Buthet al. 2009; Wuet al. 2019).

In wastewater treatment, up to 60 % of TCS is bio-transformed, and
approximately 7.4 % of TCS is converted to methyl-TCS by aerobic
digestion (Chen et al. 2011; Tohidi and Cai 2017). Methyl-TCS can
reduce growth inhibition of microorganisms and avoid the formation of
UV-driven dioxins (Farré et al. 2008). However, methyl-TCS is more
persistent than TCS in the environment (Lozano et al. 2013). For
example, the half-life of methyl-TCS (104 d) in soil is four times that of
TCS (443 d) (Lozano et al. 2012). Methyl-TCS is more hydrophobic;
therefore, it can accumulate more easily in organisms (Balmer et al.
2004; Coogan et al. 2007). Several studies have reported that methyl-
TCS has potential ecological toxicity, including inducing cytotoxicity
in hemocytes (the immune cells of mollusks) (Gaume et al. 2012) and
impacting the embryonic development of zebrafish (Danio rerio) and sea
urchin (Paracentrotus lividus) (Macedo et al. 2017). Considering the

limited ecotoxicological data on methyl-TCS, more detailed assessments
are warranted.

In the atmosphere, previous field monitoring has indicated that the
photochemical conversion of TCS could result in the formation of
gaseous polychlorinated dibenzodioxin and polychlorinated dibenzo-
furan, such as 2,7/2,8-DCDD (Friedman et al. 2012). Moreover, photo-
nitrification will produce nitro compounds and other photo-toxic sub-
stances. In brief, TCS in the atmosphere can react with HONO, leading to
the formation of 2,4-dichlorophenol, which can be further oxidized by
nitrous acid to generate 2,4-dichloro-6-nitrophenol and 5-chloro-2-
nitrophenol (Ma et al. 2017). These products are photo-toxic and
harmful to organisms and humans in the rain and atmosphere (Maet al.
2017). Evidence has proven that 2,4-dichloro-6-nitrophenol is an
endocrine-disrupting chemical, resulting in developmental toxicity of
aquatic organisms, such as Chinese rare minnow embryos (Chen et al.
2017). Furthermore, 2,4-dichloro-6-nitrophenol can also induce hyper-
trophy of hepatocytes, inhibit of spermatogenesis, and the degeneration
of oocytes (Chen et al. 2016).

These environmental transformation products of TCS may have
higher degradation resistance and toxicity than their parent compound.
The transformation products may pose a greater health risk to humans,
which deserves more attention in future research.

5. Adverse health effects involved from TCS exposure

Numerous studies have proven the toxicity of TCS in many organ-
isms, both in vivo and in vitro, using animal and cell models (Kumar
et al. 2021; Rehmanet al. 2021). These toxicological mechanism studies
provide data support for epidemiology. Notably, although these toxi-
cological conclusions are described around TCS, the results presented
here suggest that there may be combined adverse effects of TCS and its

Fig. 3. Environmental transformation products of triclosan.
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metabolites. Therefore, based on epidemiological and toxicological
studies, the following section briefly summarizes the adverse health
effects and potential diseases involved of TCS. Fig. 4 illustrates the
adverse health effects currently documented by TCS.

TCS is an endocrine-disrupting chemical with multiple interference
mechanisms, including disrupting hormone metabolism, displacing
hormones from hormone receptors, and disrupting steroidogenic
enzyme activity (Wang and Tian 2015). Moreover, reproductive
disruption is considered one of the most critical potential effects of TCS
(Milanovićet al. 2023). TCS exhibits antagonistic effects on sex hor-
mones, thyroid hormones, and glucocorticoids (Kenda et al. 2020;
Koľsek et al. 2015; Paul et al. 2010), while an agonist effect of TCS is also
observed on sex hormones (Huang et al. 2014). In luciferase reporter
gene assays in cells, TCS promotes the estrogen response and suppress
the androgen response, suggesting that the estrogenic/ androgenic ef-
fects of TCS may be mediated via the signaling pathways involving es-
trogen/androgen receptors (Chen et al. 2007; Koľseket al. 2015;
Rodríguez and Sanchez 2010). Furthermore, TCS also can compete with
the thyroid hormone thyroxine for binding to transthyretin (Hamers
et al. 2020). However, epidemiological studies have not shown proof-
positive evidence that TCS can affect the thyroid hormone system in
humans (Berger et al. 2018; Derakhshan et al. 2019; Guo et al. 2020a).
Although some studies have found a negative correlation between TCS
and thyroxine, the evidence for a positive correlation with stimulating
thyroid hormone is still limited (Braun et al. 2018). The reduction
mechanism of thyroxine may be due to the up-regulation of metabolism-
related enzymes induced by TCS metabolism, including CYP450, glu-
cosyltransferase, and sulfotransferase (Paul et al. 2012; Paulet al. 2010;
Zorrilla et al. 2009).

Studies have shown that interference with thyroid hormones, estro-
gen signaling, androgen activity, and the hypothalamic-pituitary axis
may further induce adverse human health outcomes, related to birth,
reproduction, and puberty in girls (Goodmanet al. 2018; Krause et al.

2012). Epidemiological studies have shown that TCS exhibits a small
inverse association with pubic hair stage, indicating a potential rela-
tionship between TCS exposure and pubertal development in girls (Wolff
Mary et al. 2010). Significantly, increased levels of TCS were found in
children with a low development quotient and the mothers of fetuses
with malformations (Guo et al. 2020b; Wei et al. 2017). Gestational TCS
exposure is also negatively associated with infant birth weight (Aker
et al. 2019; Etzel et al. 2017; Huo et al. 2018; Pattiet al. 2021); however,
prenatal TCS exposure may not affect early-childhood growth (Wu et al.
2018). Adverse associations between gestational TCS exposure and
placental steroidogenic enzyme concentration levels have also been
found, inducing more vulnerable reproductive development of the male
fetus (Wang et al. 2018). These results may explain the shortened ano-
genital distance in a Danish 3-month-old boy with prenatal exposure to
TCS (Lassen et al. 2016).

In addition to their impact on hormones, TCS adversely affects im-
mune and inflammation functions in humans (Rees Clayton Erin et al.
2011). For example, TCS can mediate the downregulation of pro-
inflammatory factors at the cellular level, such as prostaglandin E2,
cyclooxygenase, interleukin, and leukotrienes (Rehmanet al. 2021). TCS
can also increase the intracellular Ca2 + concentration and induce
lymphocyte membrane hyperpolarization. Since changing the mem-
brane potential of lymphocytes affects cellular immune function, TCS
may adversely affect the human immune system (Kawanai 2011).
Several epidemiological studies have suggested that TCS exposure may
increase the risk of specific asthma and allergen sensitization (Rees
Clayton Erinet al. 2011; Spanier et al. 2014), which might be due to a
cellular imbalance caused by a disturbance in the body’s microbes
(Okada et al. 2010). However, some reports did not find a relationship
between TCS and total immunoglobulin E (IgE) levels (Savage et al.
2012). Therefore, there is still a lack of consistent evidence on the effect
of TCS on the incidence of immune diseases, such as allergies and
asthma.

Fig. 4. Adverse health effects of triclosan, including endocrine disrupting effects, human immunity, reproductive disruption, carcinogenicity, and metabolic disease.
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TCS has also been associated with cancer development. In earlier
studies, TCS has been shown to induce hypertrophy and vacuolation of
rodents hepatocytes mediated through the peroxisome proliferation
activating receptor α (PPARα) (Rodrickset al. 2010). Further long-term
exposure experiment studies reported that TCS could stimulate hepa-
tocyte proliferation and the fibrotic response, accompanied by oxidative
stress. Importantly, TCS, as a liver tumor promoter, significantly accel-
erates the development of hepatocellular carcinoma (Yuehet al. 2014).
TCS also induces liver-free fatty acid synthesis by up-regulating fatty
acid intake and fat. These changes in lipid homeostasis may lead to
membrane instability, lipid accumulation, oxidative stress, and inflam-
mation. TCS exposure may induce liver lipid metabolism disorders,
further aggravating the liver damaging effect of TCS (Huang et al. 2020).
Another study reported that TCS could increase basal calcium levels in
human prostate cancer stromal cells through direct activation of mem-
brane ion channels, which would induce the release of vascular endo-
thelial growth factor and significantly impact prostate carcinogenesis
(Derouiche et al. 2017).

TCS exposure can also cause other problems, such as oxidative stress,
obesity, and osteoporosis (Binelli et al. 2009; Cai et al. 2019; Li et al.
2015). The effects of TCS on oxidative stress have been reviewed pre-
viously (Rehmanet al. 2021). Epidemiological studies on the relation-
ship between TCS and obesity/ osteoporosis may represent isolated
findings, lacking the consistency of similar studies. In summary,
increasing evidence indicates that TCS exposure may have adverse ef-
fects on human health. This review focuses on endocrine disruption,
adverse effects on human immune and inflammation functions, and
carcinogenicity. These results also remind us to pay more attention to
the safety and human impacts of TCS.

6. TCS exposure: Misgivings in the post-pandemic era

Since the COVID-19 pandemic outbreak, TCS-containing disinfecting
cleaning products have been increasingly consumed. In UK alone, the
sales of hand soaps surged by 102 % (Chirani et al. 2021) while the
proportion of consumers using hand sanitizers rose to 89.9 % in South
Korea (Choi et al. 2021). In people using TCS-containing gel sanitizers,
the TCS intake through hand-to-mouth exposure is twice as high as
before the COVID-19 pandemic (Wanget al. 2022). However, this does
not apply to countries or regions that have prohibited TCS added to
certain types of soaps. Environmental and human exposure levels of TCS
have already shown a significant downtrend in the USA (Adhikari et al.
2022; Han et al. 2016; Kim et al. 2021). Surprisingly, despite 21.3 % of
hand sanitizers in China containing TCS, a significantly higher per-
centage compared to countries such as India, Brazil, Nigeria, the UK, and
the USA, and the Arab Emirates (Wanget al. 2022), the internal exposure
level to TCS in southern China has increased following the pandemic.
For instance, in 2021, the mean concentration of TCS in adult urine was
reported to be 14.2 ng/mL (Tian et al. 2023), which is significantly
higher compared to the pre-pandemic concentration of 1.87 ng/mL in
the same region (Zhang et al. 2021a). Unfortunately, there are no more
experimental data and evidence to prove and explain the above trend,
that is, that human exposure to TCS has decreased overall. We speculate
that these phenomena may be due to increased consumer self-awareness
of the adverse effects of TCS. However, continuous human exposure to
TCS in the post-pandemic era, health hazards remain unknown due to
the metabolism and environmental transformation of TCS.

TCS in healthcare products has not been prohibited in countries
other than the USA and the European Union (Daret al. 2022). In Canada,
continuous annual detection from 2012 to 2018 of surface water has
found a general increase in TCS concentration (Lalonde et al. 2019).
Consequently, the sustained consumption of TCS in non-controlled re-
gions could lead to the increased TCS in the environment. Alarmingly,
TCS can promote the development of antibiotic resistance, threatening
public health (Lu et al. 2018), even at trace TCS concentrations (Martin
et al. 2020). TCS-induced bacteria extend their resistance to antibiotics

by acquiring antibiotic-resistance genes via horizontal gene transfer (Lu
et al. 2020). These conjunction transfers mediated by TCS are primarily
related to excessive oxidative stress and increased membrane perme-
ability (Luet al. 2022). The relative abundance of antibiotic-resistance
genes [erm(X), a 23S rRNA methyltransferase implicated in resistance
to several antibiotics] in house dust is linked to the TCS concentration
(Hartmann et al. 2016). TCS can even mediate the conjunction transfer
of the RP4 plasmid to opportunistic human pathogens (Legionella spp, a
common cause of severe pneumonia in community settings) (Fields et al.
2002), potentially resulting in serious public health risks (Luet al. 2022).
However, after TCS exposure ceased, the antibiotic tolerance of the
adapted cells declined over time, revealing that reduced TCS release
may mitigate the propagation of antibiotic resistance (Li et al. 2019).
Nonetheless, the threshold concentration of TCS, the sensitive microbial
populations, an evaluation of the degree of horizontal gene transfer, and
the breakthrough time point for triggering pathogenic evolution remain
unclear. Especially, TCS transformation can occur in environmental
microbial consortia (Yin et al. 2022), even in intestinal microbiota
(Zhang et al. 2023). highlighting the importance of risk assessment for
the spread of antimicrobial resistance in microbiota during TCS
transformation.

7. Conclusions and future perspectives

The vast global presence of TCS in the environment and in humans
suggests a large-scale and potentially global contamination trend.
Especially in the context of pandemic viruses and pathogenic bacteria,
human exposure to TCS could increase rapidly. There are currently
limited toxicological assessments of TCS during environmental trans-
formation and human metabolism. Existing studies have observed that
the human body can rapidly metabolize TCS, and the metabolic process
might cause adverse health effects. Environmental transformations
aimed at detoxification also lead to the formation of carcinogenic di-
oxins. Accordingly, despite accruing epidemiological studies on TCS, the
adverse effects on human health during environmental transformation
and human metabolism of TCS remain unclear. The following sugges-
tions are necessary for future research:

1) Extensive toxicological studies and assessment of toxicity evo-
lution. Existing studies have reported that TCS has multiple toxic
effects. However, the evolution of these toxic effects in various
transformation pathways remains largely unknown. Particularly the
human metabolism of TCS may trigger a chain reaction of signaling
pathways. Therefore, it is urgent to conduct extensive and effective
research on the human health impacts of TCS metabolism.

2) Identification and quantification of toxic transformation prod-
ucts. It is very important to identify the toxic transformation prod-
ucts of TCS and individually assess the toxicity of these products.
Furthermore, considering the toxic effects associated with exposure
dose, these toxic products of TCS transformation should be moni-
tored quantitatively monitored.

3) Relationship between toxic mechanisms and potential adverse
health outcomes. Existing adverse effects of TCS in humans mainly
focus on two aspects: the toxicological mechanisms and epidemi-
ology. Although several studies on the mechanisms of TCS toxicity
have guided the adverse health outcomes in humans, the available
information is still limited, which is crucial for the adequate pro-
tection of human health. Namely, further investigations into the
relationship between toxic mechanisms and potential adverse health
outcomes are urgently needed.

4) Synergistic effect between microbial metabolism and develop-
ment of antibiotic resistance to TCS. Reversible antibiotic resis-
tance to TCS and its resistance mechanisms have been revealed.
Considering TCS transformation in microbes, the synergistic effect
between microbial metabolism and the development of antibiotic
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resistance for TCS should be determined for public health assess-
ments of TCS.
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Mezcua, M., Gómez, M.J., Ferrer, I., et al., 2004. Evidence of 2,7/2,8-dibenzodichloro-p-
dioxin as a photodegradation product of triclosan in water and wastewater samples.
Anal. Chim. Acta 524, 241–247.
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