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A B S T R A C T

Hydroxymethylsulfonate (HMS) is an abundant secondary organic aerosol from aqueous or heterogeneous 
processes and may be misidentified as sulfate in conventional measurements. High concentrations of HMS have 
been observed in humid winter and autumn haze in northern China, while its prevalence in other seasons is 
unclear and the production medium is controversial. In this study, our field measurements in Beijing during the 
2021 spring first showed the presence of HMS in PM2.5 during both haze and sandstorm events despite the 
different atmospheric conditions. HMS accounted for 0.44% of PM2.5 during haze periods, higher than the 
proportion (0.097%) during sandstorms. The sum of HMS and sulfate was also higher during the haze (6.5 μg 
m− 3) than during the sandstorm (2.6 μg m− 3), while the HMS/sulfate molar ratio during the haze (0.021) was 
similar to the value during the sandstorm (0.019). HMS concentration showed a good positive correlation with 
aerosol water content (AWC), indicating multiphase production. During haze periods, relatively high AWC 
favored the formation of HMS. In contrast, relative humidity and AWC decreased significantly during sandstorm 
events, while high pH favored HMS formation. In addition, higher concentrations and proportions of HMS were 
observed in PM2.5− 10 than in PM2.5. The presence of HMS in dust particles indicated a heterogeneous formation 
mechanism of HMS on mineral aerosols. Our findings broaden the prevalence of HMS in aerosols and indicate a 
new HMS formation mechanism from the perspective of observation.

1. Introduction

Particulate matter (PM) pollution is a worldwide environmental 
problem, especially in the North China Plain (An et al., 2019; Chu et al., 
2020; Zhao et al., 2024), with adverse effects on air quality, human 
health, and climate (Geng et al., 2021; Li et al., 2022; Shaddick et al., 
2020). PM comes from both natural and anthropogenic sources, and 
pollution in urban areas is mainly influenced by anthropogenic sources 
(Zhang et al., 2015). Unlike the London smog and the Los Angeles 

photochemical smog, China’s haze pollution is more complex with the 
co-existing strong homogenous nucleation and multi-
phase/heterogeneous processes (Chu et al., 2020). With the imple-
mentation of a series of clean air policies in recent years by the Chinese 
government, anthropogenic emissions have dropped significantly and 
air quality has improved (Zhang et al., 2019; Zheng et al., 2018). 
However, the frequency of extreme weather events, such as sandstorms 
(Wang et al., 2022), increased in recent years (Li et al., 2021a), exac-
erbating pollution and leading to additional adverse health effects 
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(Zhang et al., 2020).
Strong sandstorms resurged in 2021 after an absence of more than 

ten years (Yin et al., 2022). During these sandstorm episodes, the hourly 
peak concentration of PM10 (particulate matter with an aerodynamic 
diameter ≤10 μm) in Beijing reached 5267.7 μg m− 3 (Liu et al., 2023). 
The resurgence of severe sandstorms has made China’s air pollution 
situation even more complex, especially when sandstorms coincide with 
haze pollution (Liu et al., 2023). A great contribution of anthropogenic 
emissions has an impact on the areas downwind of the sandstorm in 
China (Yu et al., 2023). Cheng et al. (2022) observed PM2.5 (particulate 
matter with an aerodynamic diameter ≤2.5 μm) in the spring of 2021 
and identified emission sources by the positive matrix factorization 
(PMF) model in Lanzhou, a city in northwest China, and found that dust 
(32.0%) and industrial entities (29.8%) were the top two sources 
contributing to PM2.5 concentration. Zuo et al. (2022) investigated the 
stable Fe isotopic compositions of magnetic particulate matter during 
the 2021 Beijing sandstorm episodes, revealing the complexity of PM2.5 
affected by human sources. The coupling of natural and anthropogenic 
sources will also enhance the heterogeneous reactions under certain 
meteorological conditions. Insoluble mineral aerosols can adsorb water 
(Schuttlefield et al., 2007) and provide a medium for reactions with 
anthropogenic pollutants like sulfur dioxide (SO2), nitrogen oxides 
(NOx), ammonia (NH3), and volatile organic compounds (VOCs) (Fu 
et al., 2016; Kok et al., 2023).

Hydroxymethanesulfonate (HMS, CH2(OH)SO3
− ) is an important 

organosulfur compound formed by dissolved SO2 and formaldehyde 
(HCHO) in aqueous solution and has been reported in cloud water, fog 
water, and aerosols around the world (Dixon and Aasen, 1999; Eatough 
and Hansen, 1984; Gilardoni et al., 2016; Munger et al., 1986; Munger 
et al., 1990; Olson and Hoffmann, 1989; Scheinhardt et al., 2014; Suzuki 
et al., 2001; Whiteaker and Prather, 2003; Winkelman et al., 2002). 
Recently, HMS has become a research hotspot again because of its sig-
nificant contribution to autumn and winter haze pollution in the North 
China Plain, where HMS concentrations in PM2.5 can be up to 18.5 μg 
m− 3, and HMS can be misidentified as sulfate in conventional ion 
chromatography (IC) and aerosol mass spectrometer (AMS) measure-
ments and lead to an overestimation of sulfate (Chen et al., 2022; Ma 
et al., 2020; Moch et al., 2018; Song et al., 2019; Wei et al., 2020). It can 
be used as a tracer of atmospheric secondary reactions in liquid or 
heterogeneous phases (Dixon and Aasen, 1999; Whiteaker and Prather, 
2003). Previous studies proposed that the production medium of HMS in 
aerosols could be cloud water (Moch et al., 2018), fog water (Liu et al., 
2021; Wei et al., 2020), or aerosol water (Ma et al., 2020). So far, reports 
on HMS in aerosols focused on humid and cold environments like 
northern China (Chen et al., 2022; Ma et al., 2020; Moch et al., 2018; 
Song et al., 2019; Wei et al., 2020) and near the Arctic areas (Campbell 
et al., 2022; Liu et al., 2021), and the prevalence of HMS in the atmo-
sphere is unclear and the medium of production is controversial.

In this study, we first reported the existence of HMS in PM2.5 during 
both haze and sandstorm pollution in Beijing during the 2021 spring. We 
revealed the different characteristics and influencing factors of HMS 
formation during haze and sandstorm events in spring. In addition, the 
distribution of HMS in coarse and fine PM during the sandstorm episodes 
was investigated. Based on the observation results, we proposed a new 
HMS formation mechanism on mineral aerosols.

2. Methods

2.1. Field measurements

Online observation and offline sample collection were simulta-
neously conducted on the rooftop of the School of Economics and 
Management on the campus of Tsinghua University (40.00◦ N, 116.34◦

E) from 14th March to 1st May, 2021.
Hourly average online observations included PM2.5 and PM10 mass 

concentrations measured by PM-712 (Kimoto Electric Co., Ltd., Japan), 

organic carbon (OC) concentrations in PM2.5 measured by APC-710 
(Kimoto Electric Co., Ltd., Japan), SO2 concentrations measured by 
SA-731 (Kimoto Electric Co., Ltd., Japan), and O3 concentrations 
measured by OA-781 (Kimoto Electric Co., Ltd., Japan). The hourly 
meteorological parameters were measured with an automatic meteo-
rological observation instrument (Milos 520, VAISALA Inc., Finland). A 
detailed description of the instruments can be found in our previous 
studies (Duan et al., 2006; Li et al., 2018; Li et al., 2021b; Xu et al., 2017; 
Yang et al., 2018). A factor of 1.6 was used to convert the OC mass into 
organic matter (OM) mass (Xing et al., 2013).

Day and nighttime samples of PM2.5 were collected on 90-mm-diam-
eter quartz filters at a flow of 100 L min− 1 by Laoying-2030 sampler 
(Qingdao Laoying Haina Opto-electronic Environmental Protection 
Group Co., Ltd., China) from 7th April to 1st May, 2021. The above 
samples were used for analyzing different characteristics and influ-
encing factors of HMS formation in Sections 3.1 and 3.2. Furthermore, 
nine daily samples of PM2.5 and PM2.5− 10 (particulate matter with an 
aerodynamic diameter from 2.5 to 10 μm) during sandstorm periods in 
March and April 2021 were collected by AS250D sampler (Kimoto 
Electric Co., Ltd., Japan) using 47-mm-diameter quartz filters at a flow 
rate of 15.4 L min− 1 and 20-mm-diameter quartz filters at a flow rate of 
1.3 L min− 1, respectively. These samples were used for the size distri-
bution analysis of HMS in Section 3.3. All the filters were baked at 
550 ◦C for 6 h before sampling. After sampling, the filters were put in the 
cassettes, packed using aluminum foil to avoid light, and then stored at 
− 20 ◦C before analysis.

2.2. HMS quantitation by ion chromatography

The detailed analytical method of HMS has been described in our 
previous study (Ma et al., 2020). Samples of 90-mm-diameter quartz 
filters were cut by a 2-cm-diameter circular punch, 47-mm-diameter 
filters were cut into four quarters and one part was taken, and 
20-mm-diameter filters were fully used. Then the filters were extracted 
twice with 5 mL 0.1% HCHO solution, treated with ultrasonic agitation 
in an ice bath for 20 min each time, and then filtered through the 0.45 
μm membrane syringe filters. Two extracts were synthesized for subse-
quent analysis. A dilute solution of 0.1% HCHO was designed to coun-
teract the HMS decomposition during the pretreatment process since 
HMS would gradually convert to sulfate over time in samples extracted 
by water (Ma et al., 2020).

The solutions were then injected into a Dionex Integration HPIC ion 
chromatography system with an AS11-HC analytical column and AG11- 
HC guard column (Dionex Corp., CA, USA) for the anion analysis. We 
used an eluent of 11 mM KOH with a flow rate of 1.5 mL min− 1 for the 
complete separation of HMS and sulfate peak. Fig. S1(a) and (c) show 
the peak of HMS and sulfate in standard solutions, and Fig. S1(b) and (d) 
show the standard curves with R2 = 0.999. Fig. S1(e) shows the chro-
matogram of the solution extracted from a PM2.5 sample in this study. 
The detection limit is 0.02 mg L− 1, and values below the detection limit 
are treated as 0.

FHMS and Fsulfate were used to calculate the fraction of HMS and 
sulfate in total sulfur by equations (1) and (2), respectively: 

FHMS =
n[HMS]

n[HMS] + n
[
SO2−

4
]
+ n[SO2]

(1) 

Fsulfate =
n
[
SO2−

4
]

n[HMS] + n
[
SO2−

4
]
+ n[SO2]

(2) 

where n refers to the molar concentration.

2.3. ISORROPIA-II thermodynamic equilibrium model calculation

Aerosol water content (AWC) and pH were calculated using the 
ISORROPIA-II thermodynamic equilibrium model. The forward model is 
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constrained by the measurements of gases (HNO3, HCl, and NH3) and 
aerosols (SO4

2− , NO3
− , Cl− , K+, Ca2+, Na+, Mg2+, and NH4

+), and the 
aerosol phase state is assumed to be metastable (Fountoukis and Nenes, 
2007; Nenes et al., 2020). Input data were attained by the online gases 
and aerosols monitoring instrument MARGA (Metrohm Ltd., 
Switzerland) at an hourly resolution (Fig. S2). More details and princi-
ples of MARGA can be found in previous studies (Chen et al., 2017; 
Rumsey et al., 2014). MARGA was set on the roof of the Suez Environ-
mental Science and Engineering Experimental Practice Teaching Center 
in the northwest area of Tsinghua University, which was less than 1 km 
away from the School of Economics and Management. Considering that 
aerosols are unlikely to be completely liquid at low relative humidity 
(RH), data with RH<20% were excluded when calculating pH (Guo 
et al., 2016). Fig. S3 and Fig. S4 show the comparisons between the 
simulated and measured NH3(g), NH4

+(p), HNO3(g), and NO3
− (p) during 

haze and sandstorm, respectively. The predicted and measured NH3(g), 
NH4

+(p) and NO3
− (p) values were in good agreement with about 0.9 r 

values and approximately 1 slope values. However, the measured and 
predicted partitioning of HNO3(g) during haze and sandstorm showed 
significant discrepancies (r values of 0.43 and 0.57, respectively), which 
may be attributed to the much lower gas concentrations than particle 
concentrations, as well as the HNO3 measurement uncertainties from 
MARGA (Ding et al., 2019; Rumsey et al., 2014).

3. Results and discussion

3.1. General characteristics of HMS in spring haze and sandstorms

In this study, we observed three HMS pollution episodes (EP-1/2/3) 
in April, as shown in Fig. 1 (see detailed data in Table S1). HMS pollution 
episodes were classified based on continuous HMS detection and over 
two days duration. EP-2 was related to an extremely severe sandstorm 
event (Liu et al., 2023; Yin et al., 2022; Zuo et al., 2022), which was 
accompanied by a sharp increase in PM10 concentration and a decrease 
in PM2.5/PM10 ratio and RH. The maximum hourly concentration of 
PM10 and PM2.5 reached 1065.7 μg m− 3 and 318.6 μg m− 3 at 17:00 on 
April 15th, respectively. EP-1 and EP-3 were related to haze pollution 
with hourly PM2.5 above 35 μg m− 3 (the Grade I guideline of daily PM2.5 
concentration in Chinese National Ambient Air Quality Standard GB 

3095–2012) and PM2.5/PM10 mass ratio over 50%. During the haze 
pollution processes, PM2.5 and PM10 concentrations simultaneously 
increased with high PM2.5/PM10 ratios (>60%) under relatively high 
RH, similar to previous studies (Li et al., 2018; Yang et al., 2018; Zheng 
et al., 2015). The PM2.5 concentration levels during the haze periods 
(EP-1 and EP-3, 40.7 ± 19.0 μg m− 3) were close to that during the 
sandstorm period (EP-2, 52.2 ± 53.5 μg m− 3), but the PM10 concen-
trations were much lower than the value during the sandstorm period 
(68.4 ± 31.7 μg m− 3 vs. 174.1 ± 208.1 μg m− 3).

Our field measurements confirmed the existence of HMS in PM2.5 
during both haze and sandstorm events in spring (Fig. 1). HMS showed a 
consistent trend with inorganic sulfate and organic matters (OM) during 
the two types of pollution (Fig. S5). The average HMS concentration 
during April was 0.066 ± 0.098 μg m− 3 with a maximum value of 0.44 
μg m− 3. The mean concentrations of HMS, sulfate, and OM in PM2.5 were 
0.16 ± 0.10 μg m− 3, 6.4 ± 2.0 μg m− 3, and 10.3 ± 5.2 μg m− 3 during the 
haze and 0.067 ± 0.10 μg m− 3, 2.5 ± 2.0 μg m− 3, and 9.7 ± 7.0 μg m− 3 

during the sandstorm, respectively. HMS concentrations in Beijing were 
lower in spring than in autumn and winter (Chen et al., 2022; Ma et al., 
2020; Wei et al., 2020), but still higher compared to other regions of the 
world (Table S2). The average HMS concentration was 1–2 orders of 
magnitude higher than that measured in the Arctic (Liu et al., 2021) and 
was 2–15 times larger than observation values in the US (Dixon and 
Aasen, 1999) and Japan (Suzuki et al., 2001) during the same season.

The contribution of HMS was more significant during the haze pe-
riods compared with the sandstorm. The proportion of HMS to PM2.5 
mass increased from 0.097% during the sandstorm to 0.44% during the 
haze. Correspondingly, HMS accounted for 1.9% of OM during the haze 
periods, which was much higher than that during the sandstorm (0.5%) 
and was close to the overall level in the 2015 winter by Ma et al. (2020)
(Fig. 2(a)).

As shown in Fig. 3(a) and (b), the concentration of HMS and sulfate, 
two main secondary sulfur species in the particle phase, was higher 
during the haze than during the sandstorm. FHMS and Fsulfate were both 
higher during the haze periods than during the sandstorm (Fig. 3(c) and 
(d)), indicating stronger secondary processes. The molar ratio of HMS to 
sulfate can be used to indicate the distribution of sulfur in the particle 
phase. The HMS/sulfate molar ratio during the haze (0.021) was similar 
to the value during the sandstorm (0.019). The molar ratios of HMS to 

Fig. 1. Characteristics of offline samples in April 2021. Variation of HMS, PM2.5, PM10, PM2.5/PM10 ratio, relative humidity (RH), aerosol water content (AWC), and 
aerosol acidity (pH). Numbers in the X-axis label represent the date, D and N refer to Day and Night, respectively. HMS concentrations are derived from offline PM2.5 
samples measured by the ion chromatography method, while other parameters are averages of online hourly data during sampling periods.
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sulfate during the sandstorm and haze in April 2021 were also compa-
rable to the level of the 2015 winter and lower than the 2016 winter as 
shown in Fig. 2(b). Therefore, HMS played an important role in PM 
pollution in both winter and spring. As HMS was a tracer of secondary 
formation in the atmosphere (Whiteaker and Prather, 2003), the exis-
tence of HMS in spring sandstorms suggested that the resurgent sand-
storm pollution under current situation had the characteristics of 
multi-source mixing.

3.2. Major influencing factors of HMS formation during spring haze and 
sandstorms

The favorable factors for HMS formation during haze and sandstorm 
events were different. As shown in Fig. 4, HMS concentration showed a 
good positive correlation (r = 0.89, P < 0.001) with AWC, consistent 
with winter results (Ma et al., 2020), indicating that aerosol water 
served as a medium for multiphase HMS production during spring. In 

Fig. 2. Box plots of (a) the mass ratio of HMS to OM, and (b) the molar ratio of HMS to sulfate in April 2021 sandstorm and haze (21S_sandstorm and 21S_haze) and 
previous winter in 2015 (15W_overall) and 2016 (16W_overall) (Ma et al., 2020). The mean (diamond), median (horizontal line), 25th and 75th percentiles (lower and 
upper box), and 5th and 95th (lower and upper whiskers) are shown. The points are colored by relative humidity (RH).

Fig. 3. Comparison of (a) HMS concentration, (b) sulfate concentration, (c) molar fractions of HMS in total sulfur, and (d) molar fractions of sulfate in total sulfur 
between haze and sandstorm pollution in April 2021. The mean (star), median (horizontal line), 25th and 75th percentiles (lower and upper box), and 5th and 95th 

percentiles (lower and upper whiskers) are shown.
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addition, HMS concentrations were higher under higher pH conditions 
under similar AWC levels. Previous studies showed that high concen-
trations of precursors (SO2 and HCHO), low oxidant levels, low tem-
perature, high RH and moderately acidic pH favored the HMS formation 
(Boyce and Hoffmann, 1984; Deister et al., 1986; Ma et al., 2020; Olson 
and Hoffmann, 1989). Fig. 5 compares the influencing factors of HMS 
formation during the haze and sandstorm events. The SO2 concentra-
tion, ozone (O3) concentration, and temperature (T) during the haze and 
sandstorm periods were similar. Haze episodes presented characteristics 

of relatively high RH and AWC, providing favorable conditions for 
multiphase reactions (Bian et al., 2014; Wu et al., 2018). During the haze 
period (EP-1 and EP-3), the average RH was 55.9% and the AWC 
increased with RH with an average of 7.5 μg m− 3 (Fig. S6). The calcu-
lations based on the ISORROPIA-II model showed an average aerosol pH 
value of 4.6 during the haze, consistent with previous results (Ding et al., 
2019; Ma et al., 2020). Therefore, the formation of HMS during the 
spring haze was similar to that during the winter haze, where AWC was a 
key influencing factor.

Fig. 4. Correlation between HMS concentration and aerosol water content (AWC) in PM2.5. Circles and triangles represent samples during haze and sandstorm 
episodes, respectively, and are colored by pH. The points are the samples with the information on HMS concentration, AWC, and pH.

Fig. 5. Comparison of (a) SO2 concentration, O3 concentration, temperature (T), relative humidity (RH), and (b) aerosol water content (AWC), the mass percentage 
of calcium and magnesium ions in PM2.5 and pH between haze (HZ) and sandstorm (SD) events in April 2021. In the box-whisker plots, the whiskers, boxes, and 
pentagrams indicate the 95th, 75th, 50th, 25th, and 5th percentiles and mean values. The **** indicates P < 0.0001 of t-test.
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During the sandstorm period (EP-2), high pH favored the formation 
of HMS despite relatively low AWC. The RH was relatively low since 
high-pressure cyclones from Mongolia (Fig. S7) brought dry air mass, 
making the average surface RH low to 30.2%. As a result, the average 
AWC dropped down to 3.1 μg m− 3 during the sandstorm. Higher aerosol 
pH has been reported in Inner Mongolia, an arid region in northern 
China close to the sandstorm source, due to a higher contribution of 
crustal dust (Wang et al., 2019). A previous study showed that aerosol 
pH increased from dust contributions (Shi et al., 2017). As shown in 
Fig. S8, the pH showed a good positive correlation (r = 0.80, P < 0.001) 
with the percentage of calcium and magnesium ions in PM2.5. Due to the 
increase of mineral cations such as magnesium and calcium ions, the 
average pH increased from 4.6 during haze to 6.2 during the sandstorm 
(Fig. 5(b)). High pH accelerated the formation of HMS since the con-
centration of HSO3

− and SO3
2− increased with the increase of pH, which 

could promote the formation rate of HMS (Munger et al., 1986; Rao and 
Collett, 1995).

3.3. HMS formation on mineral aerosols

Mineral dust may act as a reactive surface for the heterogeneous 
formation of HMS during the sandstorm. Laboratory studies and model 
simulations have shown that acidic gases such as SO2 appear to undergo 
fast neutralization reactions with alkaline material in mineral dust 
(Zhang and Carmichael, 1999). To further explore the formation of HMS 
in mineral dust, we analyzed daily PM2.5 and PM2.5–10 samples collected 
during the sandstorm episodes in the spring of 2021. As shown in Fig. 6, 
HMS concentration and its contribution to PM2.5–10 in the sandstorm 
samples were higher than those in PM2.5. The contribution of HMS to 
particles increased with particle size, consistent with winter results that 
HMS contributed more in larger particles (Ma et al., 2020), but different 
from previous reports in cloud and fog droplets (Reilly et al., 2001; 
Whiteaker and Prather, 2003). This suggested a possible HMS hetero-
geneous formation mechanism on the surface of mineral aerosols. A 
morphology study showed that the dust particles of sandstorms could 
also incorporated with particles from polluted East Asia to complicate 
the secondary aerosol formation (Xu et al., 2020). A soluble coating with 
hydrophilicity was created after the chemical aging of dust (Kok et al., 

2023). Previous studies have also identified the adsorption of SO2 
(Huang et al., 2015) and HCHO on mineral dust (Tang et al., 2017; Xu 
et al., 2011). Therefore, we speculate that HCHO and SO2 undergo 
heterogeneous reactions on wet dust surfaces to form HMS.

3.4. Atmospheric implications

Our continuous observations in spring extend the understanding of 
the seasonal characteristics of HMS and first report the presence of HMS 
in dust aerosols during sandstorms. The observed HMS concentrations 
and HMS to sulfate molar ratios in spring were lower than those in 
northern China during the severe winter haze (Ma et al., 2020; Wei et al., 
2020) but higher than those in Europe (Gilardoni et al., 2016; Schein-
hardt et al., 2014), America (Campbell et al., 2022; Dixon and Aasen, 
1999; Liu et al., 2021; Munger et al., 1986; Whiteaker and Prather, 
2003), and Japan (Suzuki et al., 2001). The prevalence of HMS in both 
fine and coarse particles provides suggestions for air governance that 
VOCs need to be preferentially controlled despite the significant 
reduction in SO2.

Our findings suggest the factors that favor HMS formation in various 
environments are different. The factors that favor HMS formation in 
spring haze are similar to those in autumn and winter haze, which 
depend on the content of aerosol water. An enhancement of HMS for-
mation in aerosol water resulting from the amplified ion strength 
compared with in bulk water has been investigated by laboratory ex-
periments (Zhang et al., 2023). The latest revision of the GEOS-Chem 
model has taken into account the contribution of aqueous aerosol 
chemistry to HMS production (Wang et al., 2024). In contrast, the 
meteorological conditions in Beijing spring sandstorms have great dif-
ferences in humidity and pH compared with winter and autumn. The 
decrease of relative humidity and the consequent decrease of AWC in 
spring sandstorm episodes seem to be unfavorable for the formation of 
HMS, but the HMS concentration and its importance in particulate sulfur 
are still significant under high pH. The heterogeneous formation 
mechanism of HMS on mineral aerosols is speculated, and more field, 
laboratory, and modeling work is needed in the future to elucidate the 
formation mechanism and influencing factors of HMS during sandstorm 
events.

The presence of HMS in sandstorms indicates that dust particles 
nowadays are affected by anthropogenic pollution and sandstorms are 
becoming more complex. Radiative effects from dust aerosols mixed 
with secondary components may change through interactions with ra-
diation, atmospheric chemistry, clouds, the cryosphere, and biogeo-
chemistry (Kok et al., 2023). In addition, the significant influences of 
sandstorms by anthropogenic emissions increase their health impacts 
(Xia et al., 2021). Therefore, more research on the chemical character-
istics and processes of sandstorms affected by anthropogenic emissions 
and their impact on climate and health is needed.

4. Conclusion

In this study, we explored the characteristics and formation mecha-
nism of HMS through field observations in Beijing during the 2021 
spring. Despite the different atmospheric conditions, HMS was observed 
in PM2.5 during both haze and sandstorm episodes. The concentrations 
of HMS increased with the increase of AWC, indicating that aerosol 
water served as a production medium for HMS. The favorable factors for 
HMS formation during haze and sandstorms were different. During haze 
periods, the AWC was relatively high with a moderately acid pH. During 
the sandstorm periods, higher pH due to a higher content of mineral dust 
favored the formation of HMS despite relatively low AWC. Furthermore, 
the size distribution of HMS during sandstorm events showed a higher 
proportion of HMS in coarse particles. Our field observations indicated 
the heterogeneous formation of HMS on mineral aerosols. This study 
broadens the prevalence and formation mechanism of HMS in aerosols 
and highlights the complexity of recent sandstorms.

Fig. 6. Comparison of HMS concentration and HMS/PM ratio between PM2.5 
and PM2.5–10 samples during sandstorm events in spring 2021. In the box- 
whisker plots, the whiskers, boxes, and pentagrams indicate the 95th, 75th, 
50th, 25th, and 5th percentiles and mean values. The **** and ** indicate P <
0.0001 and P < 0.01 of t-test, respectively.
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