

Contents lists available at ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Boosting the adsorption and photocatalytic activity of carbon fiber/ MoS₂-based weavable photocatalyst by decorating UiO-66-NH₂ nanoparticles

Wei Cao^{a,b,1}, Yan Zhang^{a,b,1}, Zhun Shi^a, Ting Liu^a, Xinshan Song^a, Lisha Zhang^{a,b,*}, Po Keung Wong^{d,e}, Zhigang Chen^{c,*}

^a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China

^b Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China

^c International Joint Laboratory for Advanced Fiber and Low Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

^d School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong,

^e Institute of Environmental Health and Pollution Control, School of Environmental Science & Engineering, Guangdong University of Technology, Guangzhou 510006, China

ARTICLE INFO

Keywords: MoS₂/UiO-66-NH₂ Carbon fiber Weavable photocatalyst Levofloxacin Visible light

ABSTRACT

MoS₂-based nanocomposites on carbon fibers (CFs) have been well developed, but their practical applications are still limited owing to the unsatisfactory adsorption and photodegradation performances. To deal with these issues, we report the growth of UiO-66-NH₂ nanoparticles as a porous co-photocatalyst to decorate MoS₂ nanosheets on CFs. CFs/MoS₂/UiO-66-NH₂ bundles are woven into a macroscopical cloth ($4 \times 4 \text{ cm}^2$, 0.15 g). CFs/MoS₂/UiO-66-NH₂ cloth can efficiently adsorb 34.9% levofloxacin (LVFX) and 35.3% hexavalent chromium (Cr (VI)) after 60 min, which is an obvious improvement (1.3–2.9 times) compared with that by CFs/MoS₂ cloth. Importantly, the cloth can remove 88.4% LVFX or 98.4% Cr(VI) within 120 min, which is 1.6–2.7 times compared with that by CFs/MoS₂ cloth, resulting from the high adsorption and two-component synergistic photocatalytic activity. Furthermore, CFs/MoS₂/UiO-66-NH₂ shows a slight decline from 88.4% to 76.9% under ysible light irradiation after 4 cycles. Thus, the semiconductor/MOF-based heterojunction on CF provides a general strategy to develop novel weavable photocatalysts for eliminating various pollutants.

1. Introduction

With the development of the industrial enterprises, lots of wastewater has been released to the river and other water bodies. There are huge challenges in treating the wastewater, which contains organic pollutants (including dyes, herbicides, antibiotics) or heavy metal ions (including Cr(VI)), due to their recalcitrance and persistence [1]. To effectively remove the aqueous organic pollutants and heavy metal ions, many techniques have been well developed, such as advanced oxidation technology [2], biodegradation [3], electrocatalysis [4], membrane separation [5], and photocatalytic technology [6]. Among them, photocatalysis is an ideal strategy because of the low toxicity, low energyconsumption, high efficiency and mild reaction condition [7]. The key issue is to prepare efficient and cost-effective photocatalysts [8]. Many photocatalysts have been constructed, for instance, oxides (TiO₂ [9], Mn_2O_3 [10]), sulfides (MoS₂ [11], ZnS [12]) and nitrides (g-C₃N₄ [13]). Among them, MoS₂ as a two-dimensional (2D) layered material is an excellent candidate for photocatalytic application due to the abundant active sites and wide-spectrum response. For example, Adhikari et al. fabricated MoS₂/Ag₂Mo₂O₇ nanomaterials, which could degrade 97% LVFX in 120 min under visible-light irradiation [14]. Besides, 110-BiOBr could remove 54.5% Cr(VI) in 120 min under visible-light irradiation [15]. Although these powder-shaped materials exhibit high photocatalytic activity, they are limited in practical application due to the

¹ These authors contributed equally to this work.

- - -

https://doi.org/10.1016/j.cej.2020.128112 Received 19 September 2020; Received in revised form 3 December 2020; Accepted 9 December 2020 Available online 15 December 2020 1385-8947/© 2020 Elsevier B.V. All rights reserved.

^{*} Corresponding authors at: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China (L. Zhang). *E-mail addresses:* lszhang@dhu.edu.cn (L. Zhang), zgchen@dhu.edu.cn (Z. Chen).

difficulty of recycling. Therefore, it is urgent to immobilize nanoparticles for purifying wastewater.

To fix these nanostructured photocatalysts, three methods have been widely developed. The first is fabricating nanomaterials on flat substrates such as indium tin oxide (ITO) glass or metal foil [16]. For instance, SnO₂/Zn₂SnO₄ composite was prepared on stainless steel mesh, and it could degrade 89.8% methyl orange (MO) within 150 min of simulated sunlight illumination [17]. Photocatalysts on flat substrates can be easily recycled, but they possess low surface area/flexibility and high cost. The second strategy is constructing semiconductor nonwoven cloths with nanostructured materials via electrospinning-based routes. For example, our group has reported the preparation of Fe₂O₃/AgBr [18] and Ta₃N₅/Pt nonwoven cloth [19], and these nonwoven cloths exhibit superior ability for removing contaminants. It should be noted that these nonwoven cloths are fragile and thus it is difficult to obtain cloths with large area. The last one is constructing semiconductor nanomaterials on flexible fibers or fabrics [6]. Among them, carbon fiber (CF) is a promising material due to its laudable conductivity, pliability and mechanical intensity [20]. For example, CFs/MoS₂/Bi₂S₃ can adsorb (24.4%) and degrade (74.5%) TC in 100 min under visible-light irradiation [21]. However, resulting from the high proportion of CF which shows a low specific surface area, the as-prepared photocatalysts may display insufficient synergy between adsorption and degradation for the rapid removal of pollutants. Therefore, it is still essential to fabricate photocatalysts with superior adsorption and degradation efficiency.

Metal-organic frameworks (MOFs) have a large specific surface area, controllable pore architecture, unique physicochemical properties, adjustability and variability of structures [22]. Since MOF-5 was demonstrated to have semiconductor behavior to photocatalytically degrade phenol in 2007 for the first time [23], many kinds of semiconductor-like MOFs (such as MIL-125, UiO-66 and MIL-53) have been well developed as co-photocatalysts. Among these MOF-based cophotocatalysts, Zr-based MOFs are preferable due to excellent thermal and chemical stability. As the typical Zr-based MOFs, UiO-66 is attracting the increasing attention in the photocatalytic field, due to its semiconductor properties and excellent physical/chemical properties [24]. Moreover, if UiO-66 is modified by amino functional-groups, UiO-66-NH₂ can work as a visible-light-driven catalyst. Wang et al. prepared Pd@UiO-66-NH2 metal-organic framework, and the Pd@UiO-66-NH2 could degrade 99% Cr(VI) within 90 min under visible light irradiation [25]. AgI/UiO-66-NH₂ heterojunction could degrade 80.7% tetracycline (TC) after 40 min under visible-light irradiation [26]. Unfortunately, these MOFs materials are also powder-shaped, and they cannot be efficiently recycled in practical applications.

To further improve the adsorption and photocatalytic activity of weavable CF/MoS₂-based photocatalysts and to address the recycling difficulty of MOFs-based photocatalysts, we proposed the surface decoration of CF/MoS₂ with UiO-66-NH₂ as porous co-photocatalysts. CFs/MoS₂/UiO-66-NH₂ bundles displayed a wide absorption in 200–800 nm with an edge (~470 nm). The obtained bundles could be further weaved into a macroscopical cloth (0.15 g, 4×4 cm²). The adsorption and photocatalytic activities of the cloth were investigated, and the effects of pH/pollutant concentration/inorganic ions were analyzed. CFs/MoS₂/UiO-66-NH₂ cloth exhibited the highest adsorption and two-component synergistic photocatalytic capacity for degrading LVFX and Cr(VI), with high recyclability and stability.

2. Experimental section

2.1. Material synthesis

2.1.1. Synthesis of CFs/MoS₂

The treatment of CFs is shown in Electronic Supporting Information (ESI). MoS₂ nanosheets on CFs was prepared by a modified hydrothermal route [27]. In a typical process, (NH₄)₆Mo₇O₂₄·4H₂O (2 mmol) and

 $\rm CH_4N_2S$ (30 mmol) were added in the aqueous solution (70 mL) containing CFs at 200 $^\circ C$ for 24 h. The obtained CFs/MoS₂ was washed three times with ethanol and water, and dried (60 $^\circ C$ 12 h).

2.1.2. Synthesis of CFs/MoS₂/UiO-66-NH₂

CFs/MoS₂/UiO-66-NH₂ were prepared by a modified solvothermal method [28]. ZrCl₄ (0.8 mmol) and 2-aminoterephthalic acid (0.8 mmol) were added in DMF (81.7 mL). Subsequently, acetic acid (4.6 g) was dissolved into the above mixed solution. The above solution was put into a stainless-steel autoclave together with CFs/MoS₂. Then, the autoclave was sealed and solvothermal treated (120 °C 24 h). Finally, these fibers were taken out and washed by DMF and ethanol, and dried (60 °C 12 h).

2.2. Measurements of adsorption and photocatalytic activity

CFs/MoS₂/UiO-66-NH₂ bundles (weight: 0.15 g, length: 4 cm) were divided into several bundles equally, and these bundles are interlaced or hooked together by hand-knitting to obtain CFs/MoS₂/UiO-66-NH₂ cloth. For comparison, other different flexible bundles (CFs, CFs/MoS₂ and CFs/UiO-66-NH₂) were reorganized and woven into cloths (4 × 4 cm², ~0.15 g). The adsorption and photocatalytic activity of these cloths were tested by removing LVFX (20 mg/L, 100 mL) and Cr(VI) (50 mg/L, 100 mL) as models of pollutants. In the dark, the as-prepared cloths were immersed in the solution for 60 min to explore the adsorption capacity. Then the solution with as-prepared cloths was irradiated by visible-light (Beijing Perfectlight Co. Ltd., PLS-SXE300D, 300 W, 15 A) to measure the photocatalytic efficiency. Besides, the effects of pH, LVFX concentration, inorganic ions, radical trapping tests and photocatalytic stability experiments also were performed. The detailed methods are described in ESI.

3. Results and discussion

3.1. Synthesis and characterization

MoS₂/UiO-66-NH₂ heterojunctions were obtained on CFs by a hydrothermal-solvothermal two-step method, and then these fiber bundles were used to weave the fabrics (Fig. 1a). The color of original CFs is black and CF shows a diameter of 7.2 \pm 0.5 μm (Fig. S1). After the first-step growth of MoS_2 on CFs, the color of the fiber sample turns darker (Fig. 1b). Scanning electronic microscopy (SEM) image (Fig. 1c) reveals that an obvious coating was obtained on each fiber surface. In addition, the average diameter of single fiber increases to 9.3 \pm 0.5 μm (Fig. 1d). High-resolution (HR) SEM image (Fig. 1e) shows that this coating consists of thin nanosheets (thickness: ~5 nm, diameter: 200-400 nm), which should be MoS2. Besides, HR-SEM image of fractured surface (Fig. 1f) exhibits orderly nanosheet arrays arranged on the surface of CFs, confirming the successful growth of MoS₂ nanosheet arrays on the surface of CFs. MoS₂ can be firmly grew on CFs, due to the formation of Mo-O coordination bonding between Mo atoms from MoS₂ and -OH from the oxidized CF surface [29]. After the second-step growth of UiO-66-NH₂, the color of the fibers is still black (Fig. 1g). There is no distinct change in the morphology (Fig. 1h) and the diameter of the fibers (Fig. 1i). HR-SEM image (Fig. 1j and k) shows the presence of many small nanoparticles (diameter: 20-40 nm) on the surface of MoS₂ nanosheets, suggesting the well decoration of UiO-66-NH₂ nanoparticles. It should be noted that there are close electrostatic interactions among Zr/O atoms from UiO-66-NH₂ and S/Mo atoms from MoS₂ [30], resulting in their well connection.

Subsequently, the composition of CFs/MoS₂/UiO-66-NH₂ was measured by energy dispersive spectrometer (EDS). EDS pattern of CFs/MoS₂/UiO-66-NH₂ (Fig. S2a) suggests the co-existence of C, Zr, Mo and S elements. C element should come from CF, Mo and S elements originate from MoS₂, and Zr element exists in UiO-66-NH₂. The elemental mapping results (Fig. S2b–f) indicate the uniformly distribution of these

Fig. 1. (a) Synthesis scheme of CFs/MoS₂/UiO-66-NH₂ bundles/cloth. Photo (b) and SEM images (c–f) of CFs/MoS₂ cloth. Photo (g) and SEM images (h–k) of CFs/MoS₂/UiO-66-NH₂ cloth.

elements. To further analyze the structure, $MoS_2/UiO-66-NH_2$ powder was peeled from CFs/MoS₂/UiO-66-NH₂ and transmission electron microscopy (TEM) was applied to explore the microstructure. The typical TEM image (Fig. 2a) reveals that the powder is composed of thin nanosheets, which are decorated with thousands of nanoparticles. The multitudinous nanosheets are stacked and intertwined together because of their ultrathin features. High-resolution TEM image (Fig. 2b) of the nanosheets displays a clear layer-shaped structure with a spacing of \sim 0.62 nm, which should be MoS₂ [31]. In addition, there are plenty of nanoparticles (diameter: 20–40 nm) attached to the nanosheets

Fig. 2. TEM (a-c), HADDF-STEM (d) images and elemental mappings (e-h) of MoS₂/UiO-66-NH₂ cloth.

(Fig. 2c), which should be UiO-66-NH₂ [32]. HADDF-STEM image (Fig. 2d) reveals the presence of multitudinous stacked nanosheets whose surface is decorated with some nanoparticles. Elemental mappings (Fig. 2e and f) confirm that elemental S and Mo are homogeneously distributed among stacked nanosheets, indicating that this nanosheet should be MoS₂. In addition, elemental Zr and O are distributed among these nanoparticles (Fig. 2g and h), suggesting that nanoparticles should be UiO-66-NH₂. Besides, the atomic ratio of O, Zr, Mo and S is equal to 12.01: 2.31: 16.38: 4.59, indicating that the molar ratio of MoS₂ to UiO-66-NH₂ is close to 2:1 (Table S1). Thus, the above results confirm the well formation of MoS₂/UiO-66-NH₂ heterojunctions.

X-ray photoelectron spectroscopy (XPS) was applied to analyze the surface chemical composition and elemental valence states of three samples (MoS₂ powder, UiO-66-NH₂ powder and CFs/MoS₂/UiO-66-NH₂). Full survey spectra (Fig. 3a) reveal that MoS₂ powder is composed of Mo and S elements, while UiO-66-NH2 powder consists of O and Zr elements. All these signals of these elements can be observed in CFs/ MoS₂/UiO-66-NH₂. Mo 3d XPS spectrum in pure MoS₂ powder (Fig. 3b) shows two obvious peaks at 229.1 and 232.3 eV, which associated with the Mo $3d_{3/2}$ and Mo $3d_{5/2}$ [21]. Compared with MoS₂ powder, the Mo 3d_{3/2} and Mo3d_{5/2} peak of CFs/MoS₂/UiO-66-NH₂ appear at 229.3 and 232.5 eV, with a positive shift (\sim 0.2 eV). It is worth noted that a weak S 2 s peak appears at 226.6 eV of CFs/MoS₂/UiO-66-NH₂, which indicates the presence of S^{2-} [33]. In the Zr 3d spectrum (Fig. 3c), pure UiO-66-NH₂ powder displays two obvious peaks at around 183 and 185.4 eV, which are related to the Zr $3d_{5/2}$ and Zr $3d_{3/2}$ [32]. Interestingly, Zr $3d_{5/2}$ 2 and Zr 3d_{3/2} peaks of CFs/MoS₂/UiO-66-NH₂ curve appear at 183.3 and 185.5 eV, with a positive shift (0.1 \sim 0.3 eV) compared with pure UiO-66-NH2 powder. The changes in binding energies for Mo 3d and Zr 3d indicate the robust chemical bond between UiO-66-NH2 and MoS2 [34].

X-ray diffraction (XRD) spectrometry was applied to investigate the phase of samples. (Fig. 3d). XRD pattern of pure CFs shows a broad diffraction peak at \sim 25.96°, which can be ascribed to the (002) plane of the graphite structure. It should be noted that this peak can be found in

the XRD patterns of CFs/MoS₂ and CFs/MoS₂/UiO-66-NH₂. CFs/MoS₂ shows three new obvious diffraction peaks at 14.21°, 32.63° and 58.40°, corresponding to hexagonal phase MoS₂ (JCPDS No. 37–1492). UiO-66-NH₂ powder displays obvious five peaks at 7.68°, 8.82°, 25.24°, 43.50°, 56.70°, which is consistent with previous report [35]. Obviously, CFs/MoS₂/UiO-66-NH₂ exhibits those three kinds of peaks, suggesting the good formation of hexagonal MoS₂ and UiO-66-NH₂ on CFs.

To explore the changes of specific surface area and total pore volume, N2 adsorption-desorption isotherms of as-prepared samples were further conducted by Brunauer-Emmett-Teller (BET) method. These powders are peeled from fibers to avoid the negative effects of CF substrate on the surface area and pore size tests. MoS₂ powder shows a mesoporous structure with typical IV isotherm (Fig. 3e) with low surface area $(20.6 \text{ m}^2/\text{g})$, total pore volume $(0.17 \text{ cm}^3/\text{g})$ and large average pore diameter (~29.9 nm). It should be noted that the as-prepared MoS₂ shows a relatively large specific surface area compared with that in the related reports (Table S2). UiO-66-NH₂ exhibits an obvious microporous structure, and the curve is typical type I isotherm with a H3 hysteresis loop. The hysteresis loop appears for UiO-66-NH₂ at relative high pressure $(P/P_0 > 0.8)$, which suggests the accumulation of pores [25]. Besides, UiO-66-NH₂ exhibits a high surface area (889.8 m^2/g), total pore volume (0.91 cm^3/g) and smallest average pore diameter (5.2 nm). The as-prepared UiO-66-NH₂ displays the largest specific surface area compared with that in the related publications (Table S2). After decorating UiO-66-NH2 on MoS2, MoS2/UiO-66-NH2 displays a hybrid type I/IV isotherm, revealing the existence of micropores and mesopores. Importantly, MoS₂/UiO-66-NH₂ displays an enlarged surface area $(245.9 \text{ m}^2/\text{g})$ and total pore volume $(0.52 \text{ cm}^3/\text{g})$ compared with MoS₂, suggesting that UiO-66-NH2 nanoparticles greatly expand the specific surface area of MoS₂ powder. Usually, high surface area and total pore volume leads to efficient adsorption and photocatalytic activity [36]. Besides, the pore size distribution (Fig. 3f) of samples are very narrow, implying good homogeneity of the pores. The existing micropores and mesopores in these samples provide transport paths for pollutants in photocatalytic reactions. Thus, these unique pore characteristics and

Fig. 3. (a) XPS survey spectra for MoS₂ powder, UiO-66-NH₂ powder and CFs/MoS₂/UiO-66-NH₂; High-resolution XPS spectra of Mo 3d (b) and Zr 3d (c). (d) XRD patterns of different samples; N₂ adsorption–desorption isotherms (e) and Pore size distribution (f) of MoS₂, UiO-66-NH₂ and CFs/MoS₂/UiO-66-NH₂.

large specific surface area endow $MoS_2/UiO-66-NH_2$ with more active sites, which benefit to the improvement of the catalytic activity.

3.2. Optical and photoelectrochemical measurements

To investigate the photoabsorption, different samples were analyzed by UV-Vis-NIR diffuse reflectance spectra (Fig. 4a). Pure CFs shows a broad photoabsorption in 200-800 nm, owing to the efficient scattering/absorption of light among CFs' texture and pore structure [37]. Similarly, CFs/MoS₂ shows strong and broad photoabsorption, which is consistent with that of pure MoS₂ (Fig. S3a), resulting from the co-effect of the band-gap absorption, scatting and plasmon resonance, similar to the previous report [38]. UiO-66-NH₂ exhibits an absorption edge at 464 nm. Comparing to UiO-66-NH2, the absorption of CFs/MoS2/UiO-66-NH₂ displays a slight redshift (edge: 470 nm), which demonstrates that the construction of MoS₂/UiO-66-NH₂ has no adverse influence on the optical property. Moreover, the Kubelka-Munk transformed reflectance spectra of MoS₂ (Fig. S3b) and UiO-66-NH₂ (Fig. 4b) powders were performed based on the equation $(\alpha h\nu)^n = A(h\nu - E_g)$ to estimate their band-gap energy (E_{g}) [6]. The bandgap energies (E_{g}) of MoS₂ and UiO-66-NH₂ are estimated to be 1.87 and 2.67 eV, respectively.

Furthermore, to explore the conduction band (CB) and valence band (VB) potentials (E_{CB} and E_{VB}), the Mott-Schottky (MS) plots were employed. As shown in Fig. 4c and d, the MS plot slops of MoS₂ and UiO-66-NH₂ are positive, suggesting that they are n-type semiconductors [20]. The x-intercepts of the two lines are around -0.7 and -0.85 eV vs. Ag/AgCl, which is calculated as U_{fb}. Since U_{fb} is very close to the

conduction band (CB) potential (E_{CB}) for n-type semiconductors [39,40]. Thus, the E_{CB} of MoS₂ and UiO-66-NH₂ are estimated to be -0.5 and -0.65 eV vs NHE. Furthermore, the valance band (VB) potential (E_{VB}) of MoS₂ and UiO-66-NH₂ can be calculated by the following equation: $E_{VB} = E_{CB} + E_g$. The E_{VB} of MoS₂ and UiO-66-NH₂ are 1.37 and 2.02 eV vs NHE, respectively.

To explore the charge separation efficiency during the photocatalytic process, ITO glass with samples was constructed as a working electrode. I-t study (Fig. 5a) was tested by four ON/OFF cycles at 0.5 V vs. SCE. Under visible light illumination, the current density of CFs/MoS₂/UiO-66-NH₂ cloth rises immediately and maintains at a stable value of 3.8 μ A/cm², which is higher than that of CFs/MoS₂ (~2.4 μ A/cm²) and CFs/ UiO-66-NH₂ (~0.9 μ A/cm²) cloths. When the light is off, the currents of these cloths drop and return to the initial value. This phenomenon is repeatable in four cycles, which indicates the high stability of asprepared samples. Furthermore, the electrochemical impedance spectrum (EIS) (Fig. 5b) was applied to research the electron transfer resistance. A smaller arc radius indicates a higher charge transfer speed [41]. The Nyquist impedance spectra show that arc radius of CFs/MoS₂ and CFs/UiO-66-NH₂ cloths are significantly smaller than CFs. Interestingly, CFs/MoS₂/UiO-66-NH₂ displays the smallest arc size, suggesting the lowest electrical impedance. Therefore, CFs/MoS₂/UiO-66-NH₂ cloth possesses the highest photocurrent and lowest recombination rate of photo-excited charge carriers.

Fig. 4. (a) UV–Vis-NIR spectra of the as-prepared cloths; (b) calculated band gaps of UiO-66-NH₂. Mott-Schottky plots of MoS₂ (c) and UiO-66-NH₂ (d).

Fig. 5. Photocurrent responses (a) and EIS (b) of as-prepared cloths.

3.3. Removal efficiency

The adsorption and photocatalytic performances of as-prepared

cloths were investigated via the removal of LVFX (100 mL, 20 mg/L) and Cr(VI) (100 mL, 50 mg/L) (Fig. 6a). In the dark, CFs cloth can only adsorb 1.2% LVFX and 1.7% Cr(VI), resulting from its low specific

Fig. 6. Schemes of the photocatalytic reaction system (a) and the adsorption process (b) by CFs/MoS₂/UiO-66-NH₂ bundle; The adsorption and degradation efficiency of LVFX (20 mg/L) (c) and Cr(VI) (50 mg/L) (d) with different catalysts under visible light irradiation.

surface area (about 0.33 m^2/g). CFs/MoS₂ cloth displays enhanced adsorption capacity towards LVFX (26.2%) and Cr(VI) (12%), since the layer-shaped structure of MoS2 nanosheets increases the specific absorption sites. Besides, CFs/UiO-66-NH2 can efficiently adsorb 14.8% LVFX and 10.7% Cr(VI). After decorating UiO-66-NH2 on CFs/MoS2, the obtained CFs/MoS₂/UiO-66-NH₂ cloth displays 1.3-2.9 times adsorption capacity for LVFX (34.9%) and Cr(VI) (35.3%) compared with CFs/ MoS₂ cloth (26.2% LVFX and 12.0% Cr(VI)). Adsorption efficiency of CFs/UiO-66-NH2 cloth is worse than that of CFs/MoS2/UiO-66-NH2 cloth, probably due to the low load capacity of UiO-66-NH2 on CFs in CFs/UiO-66-NH₂ sample (Fig. S4). While for CFs/MoS₂/UiO-66-NH₂, MoS₂ nanosheets promote the growth of UiO-66-NH₂ nanoparticles. Based on the experimental results, the adsorption ratio of CFs:UiO-66-NH2:MoS2 in CFs/MoS2/UiO-66-NH2 cloth can be calculated to be 1:15:26 for LVFX or 1:5:6 for Cr(VI). CFs/MoS₂/UiO-66-NH₂ cloth can absorb more Cr(VI) than LVFX attribute to the fact that Cr(VI) is charged and easier to be adsorbed on the catalyst surface and inside. Obviously, the enhanced adsorption ability of CFs/MoS₂/UiO-66-NH₂ cloth should be resulted from the decoration of UiO-66-NH₂ with large surface area $(889.8 \text{ m}^2/\text{g})$ and total pore volume $(0.91 \text{ cm}^3/\text{g})$. The large surface area provides a lot of active site for pollutants, which contribute to the adsorption of pollutants by CFs/MoS₂/UiO-66-NH₂ cloth. Besides, the pore size (5.2 nm) of UiO-66-NH₂ is larger than that of LVFX (1.6 nm) or Cr(VI) (0.65 nm) (Fig. 6b), which were calculated by Materials Studio. The large pore size of UiO-66-NH2 facilitates the entrance of LVFX or Cr (VI) molecule, contributing to the well distribution/loading on their surface and the interior. Besides, CFs/MoS2/UiO-66-NH2 cloth shows better adsorption capacity compared with other materials in the literature, such as Ag/AgCl@ZIF-8/CN (20% LVFX) [42], ZnFe₂O₄/NCDs/ Ag₂CO₃(13% LVFX) [43], Pd@UiO-66(NH₂) (10% Cr(VI)) [25] or UiO-66(NH₂) (4% Cr(VI)) [44].

When the xenon lamp is turned on, no LVFX can be degraded by CFs

cloth, proving that CF has no photo-degradation ability towards LVFX. CFs/MoS₂ can degrade 56.3% LVFX molecules in 120 min, which is better than CFs/UiO-66-NH2 (35.6%). Importantly, CFs/MoS2/UiO-66-NH2 cloth can remove 88.4% LVFX molecular in 120 min, which is 1.6 times compared with that by CFs/MoS₂ cloth (56.3%) (Fig. 6c). Besides, Cr(VI) was selected to test the photo-reduction effect of CFs/MoS₂/UiO-66-NH2 cloth. CFs/MoS2/UiO-66-NH2 cloth absorbs visible light and quickly reduce the toxic Cr(VI) to low-toxic Cr(III). Only 36.9% and 25.8% Cr(VI) can be reduced to Cr(III) by CFs/MoS2 or CFs/UiO-66-NH2 cloths after 120 min. Importantly, CFs/MoS2/UiO-66-NH2 cloth can remove 98.4% Cr(VI) after 120 min, which is 2.7 times compared with that (36.9%) by CFs/MoS₂ (Fig. 6d). These experimental facts strongly suggest that CFs/MoS₂/UiO-66-NH₂ is capable of removing LVFX and reducing Cr(VI) from wastewater under the visible-light irradiation. Furthermore, the photocatalytic activity for degradation of LVFX and Cr (VI) by prepared CFs/MoS₂/UiO-66-NH₂ cloth under visible light irradiation were compared with other previous reported photocatalysts. For example, Zhou et al. studied that Ag/AgCl@ZIF-8/CN composite can remove 87.3% LVFX within 60 min [42]. Liang and his colleagues designed layered 2D/2D Bi@Bi₅O₇I/rGO heterojunction composite. The novel composite could photocatalytically remove 87.7% LVFX [45] and Liang et al. reported that MIL-68(In)-NH₂ could reduce 97% Cr(VI) in 180 min under visible light irradiation [46]. Notably, the as-synthesized CFs/MoS₂/UiO-66-NH₂ cloth not only exhibits higher photocatalytic activity towards LVFX and Cr(VI) compared with related publications, but also owns a simple recovery process.

Furthermore, the effects of pH values were studied by using CFs/ $MoS_2/UiO-66-NH_2$ cloth. In the photocatalytic experiments, four different pH values (range: 2.15–11.13) were adjusted in LVFX (20 mg/L, 100 mL) solution (Fig. 7a). With pH value increases from 2.15 to 5.18, the corresponding LVFX removal efficiency goes up from 56.8% to 88.4%. However, when further increase pH from 5.18 to 11.13, the

Fig. 7. Effect of pH (a) and LVFX concentration (b) on degradation efficiency by CFs/MoS₂/UiO-66-NH₂ cloth; Influence of NaSO₄, NaCl, Na₂CO₃ (c) and Na₂SO₄, MgSO₄, (NH₄)₂SO₄ (d) on photocatalytic activity over CFs/MoS₂/UiO-66-NH₂ cloth.

degradation efficiency goes down to 46.0%. This phenomenon could be interpreted as follows: LVFX antibiotics have two pK_a values, where pK_{a1} and pK_{a2} are 5.33 and 8.07, respectively [47]. Thus, when the pH is 2.15 or 3.15, LVFX becomes a cationic molecule, and the surface charge of CFs/MoS₂/UiO-66-NH₂ cloth is also positive, resulting in electrostatic repulsion force and reduces the adsorption and photodegradation capability. Similarly, when pH is 11.13, there is an inhibition in the adsorption attribute to the repulsive force between the anionic LVFX and the negative surface charge of the CFs/MoS₂/UiO-66-NH₂ cloth. Besides, alkaline conditions will inhibit the production of \cdot O₂, resulting in a decrease in the degradation efficiency [48]. When the pH is 5.18, the surface charge of the CFs/MoS₂/UiO-66-NH₂ cloth and ionization conditions of LVFX solution could be converted between positive and neutral state, the surface holes generated constantly. Thus, CFs/MoS₂/ UiO-66-NH₂ cloth shows superior efficiency under weak acid conditions.

The effects of the initial LVFX concentration (5–40 mg/L) were evaluated by using CFs/MoS₂/UiO-66-NH₂ (weight: 0.15 g) under visible light illumination (Fig. 7b). With the increase of LVFX concentration from 5 to 40 mg/L, the degradation efficiency by CFs/MoS₂/UiO-66-NH₂ cloth decreases from 95.8% to 60.0%. The decreased efficiency should be result from the fact that high concentration of LVFX cover some active sites on cloth, obstruct the penetration of light as well as impede the photogenerated electrons to reach the surface of the LVFX drug. Besides, there are many inorganic ions in practical wastewater that can affect the removal of target pollutants. In this study, Na₂SO₄, NaCl, Na₂SO₄ as an influencing ion, the degradation efficiency of CFs/MoS₂/

UiO-66-NH₂ cloth maintains at 88.4%, indicating that the effects of Na₂SO₄ on photocatalytic activity can be neglected. When NaCl or Na₂CO₃ is added into the LVFX solution, the degradation efficiency of the cloth distinctly decreases from 88.4% to 79.2% (NaCl) or 56.7% (Na_2CO_3) (Fig. 7c). The inhibition of Cl⁻ on degradation efficiency should be resulted from the inevitable competitive adsorption between Cl^{-} and LVFX. While CO_{3}^{2-} is known to serve as a radical scavenger, which can consume 'OH radicals generated in the photocatalytic reaction [45]. (NH₄)₂SO₄ and MgSO₄ show significant inhibition for the degradation of LVFX (Fig. 7d), with the corresponding degradation efficiency drop from 88.4% to 65.3% ((NH₄)₂SO₄) or 59.2% (MgSO₄). The decrease in photocatalytic performance can be explained by the competition of NH_4^+ and Mg^{2+} over the active sites with LVFX, which may increase the difficulty in degrading LVFX [49]. The above results demonstrate that the existence of Cl^- , CO_3^{2-} , Mg^{2+} and NH_4^+ ions inhibit the degradation efficiency of LVFX by CFs/MoS₂/UiO-66-NH₂ cloth.

To explore the main reactive species, different capture agents were put into the LVFX solution. Apparently, with ammonium oxalate (AO) or isopropyl alcohol (IPA) as scavengers to capture h^+ or •OH, there is no apparent change in the photodegradation efficiency (Fig. 8a). The corresponding rate constant is 0.02591 min⁻¹ (AO) or 0.01588 min⁻¹ (IPA) (Fig. S5a). However, when silver nitrate (AgNO₃) or benzoquinone (BQ) is added as scavengers to capture e^- or •O₂, the degradation efficiency of LVFX distinctly decrease from 88.4% to 29.6% or 9.4% with the corresponding rate of 0.00306 min⁻¹ (AgNO₃) or 0.00153 min⁻¹(BQ), respectively. The above results indicate that •O₂ and e^- are the main reactive species during the photodegradation of LVFX by CFs/MoS₂/

Fig. 8. (a) LVFX removal efficiency and reaction kinetics with various scavengers. (b) ESR spectra for DMPO- \cdot O₂⁻. (c) Multicycle run experiment in removing LVFX and (d) XRD pattern of the cloth before/after the photocatalytic reaction.

UiO-66-NH₂ cloth. Electron spin resonance (ESR) tests were applied to test the signal of $\cdot O_2^-$ and $\cdot OH$. After illuminated by visible light for 10 min, ESR spectrum of DMPO- $\cdot O_2^-$ (Fig. 8b) exhibits obvious characteristic peaks, indicating the existence of $\cdot O_2^-$. However, ESR spectrum of DMPO- $\cdot OH$ (Fig. S5b) exhibits several weak peaks, implying that few $\cdot OH$ radicals were produced. Therefore, the ESR experiments further confirm that $\cdot O_2^-$ is the main reactive specie in the photo-degradation process of LVFX by CFs/MoS₂/UiO-66-NH₂ cloth.

The recycling ability and stability of CFs/MoS₂/UiO-66-NH₂ cloth was studied by 4-cycle tests. Before each cycle, CFs/MoS₂/UiO-66-NH₂ (area: 4×4 cm², weight: 0.15 g) was taken out from the reaction system by tweezers, washed by deionized water several times and immersed into the deionized water overnight, then dried (60 $^\circ\text{C},$ 6 h). CFs/MoS $_2/$ UiO-66-NH₂ cloth shows a slightly downward trend in LVFX removal efficiency from the first cycle (88.4%) to the fourth cycle (76.9%) (Fig. 8c), probably resulting from the surface area reduction (Table S3) and the fact that many pollutants were absorbed on the surface of cloth, leading incomplete LVFX desorption. Moreover, XRD pattern (Fig. 8d) and SEM images (Fig. S6) of used CFs/MoS2/UiO-66-NH2 cloth are similar to those of the original sample. Besides, the cost of CFs/MoS₂/ UiO-66-NH₂ was estimated to be approximately 0.8/g (Table S4–S6). CFs were used for 10 times at an average cost of \$ 0.08/g each time, indicating a low cost (the detailed calculations are presented in the ESI). To further confirm the stability of CFs/MoS₂/UiO-66-NH₂ cloth, the leakage of Mo and Zr ions in the solution after each photocatalytic cycle was monitored by inductively coupled plasma optical emission spectrometer (ICP-OES) analysis (Fig. S7). The released Mo and Zr (% of original) are all less than 3% during 1-4 cycles (2-8 h), demonstrating the good chemical stability of CFs/MoS2/UiO-66-NH2 cloth. Thus, CFs/ MoS₂/UiO-66-NH₂ cloth possesses good recyclability and stability for photodegrading the wastewater.

To investigate the degradation pathways of LVFX by CFs/MoS₂/UiO-66-NH₂ cloth, liquid chromatography-tandem mass spectrometry (LC-MS) was carried out to observe intermediates products. According to the mass spectra (Fig. S8), we summarized the possible intermediates products of LVFX degradation (Table S7) and photocatalytic degradation pathways (Fig. 9). Product 1 (m/z = 322) and product 2 (m/z = 340) are due to the loss of C₃H₄ or HF molecules from the LVFX parent. The main degradation path is as follows: Product 3 (m/z = 318), 4 (m/z =235) and 5 (m/z = 218) ascribes to the decarboxylation, the removal of piperazinyl group and defluorination step. In addition, LVFX molecule can be oxidized to Product 6 (m/z = 307). Product 7 (m/z = 263), 4 (m/z =235) and 5 (m/z = 218) appear due to the decarboxylation of Product 6 (m/z = 307). Product 8 (m/z = 227) are formed and can be assigned to a series of dehydration processes. Product 10 (m/z = 264) is formed due to the removal of piperazinyl group of Product 9 (m/z = 292). These byproducts might be further oxidized into small molecular products or mineralized inorganic compounds. These facts illustrate that CFs/MoS₂/ UiO-66-NH₂ cloth can effectively degrade LVFX under the visible-light irradiation.

3.4. Mechanisms

According to the above results, CFs/MoS₂/UiO-66-NH₂ cloth exhibits the high removal efficiencies toward LVFX and Cr(VI). High removal efficiencies probably result from the following two advantages, as shown in the mechanism scheme (Fig. 10). One is the improvement of adsorption (1.3-2.9 times) after decorating UiO-66-NH2. CFs/MoS2/ UiO-66-NH2 cloth displays good adsorption and diffusion of pollutant molecules, resulting from its open channels, high specific surface area $(245.9 \text{ m}^2/\text{g})$ and total pore volume $(0.52 \text{ cm}^3/\text{g})$, as confirmed by Fig. 3e and f. The other one is the two-component synergistic photocatalytic capability. After decorating UiO-66-NH₂, the obtained cloth retains the strong photoabsorption (Fig. 6) and shows the highest photocurrent and the lowest recombination rate (Fig. 5a and b). Under visible light, both MoS₂ and UiO-66-NH₂ component can be excited to produce photogenerated electrons. Since the E_{CB} of UiO-66-NH₂ is more negative than that of MoS₂, the photogenerated electrons in CB of UiO-66-NH₂ would shift to the CB of MoS₂. Subsequently, the electrons in MoS₂ can further flow to the conductive CF and reduce O₂ to generate

Fig. 9. Possible photo-degradation pathway of LVFX by CFs/MoS₂/UiO-66-NH₂ cloth.

Fig. 10. Schematic illustration of adsorption and photocatalysis mechanism of CFs/MoS₂/UiO-66-NH₂ cloth.

 \cdot O₂, thus promote LVFX molecule degradation. All the above advantages together endow the CFs/MoS₂/UiO-66-NH₂ cloth with superior adsorption and photocatalytic performance during removing pollutants (Fig. 6c and d).

4. Conclusions

UiO-66-NH₂ nanoparticles have been used as a model of MOF to decorate MoS₂ nanosheets on CFs. UiO-66-NH₂ nanoparticles with the size of 20–40 nm greatly improve the surface area (20.6 m^2/g MoS₂, 245.9 m²/g MoS₂/UiO-66-NH₂) and total pore volume (0.17 cm³/g MoS_2 , 0.52 cm³/g $MoS_2/UiO-66-NH_2$). After the decoration of UiO-66-NH₂, there are two obvious improvements. The first one is the improvement of adsorption capacity. In the dark, the weaved CFs/ MoS₂/UiO-66-NH₂ cloth exhibits remarkable enhanced absorbing capacity by adsorbing more LVFX molecules (34.9%) and Cr(VI) (35.3%), which is 1.3-2.9 times than that by CFs/MoS2 cloth (26.2% LVFX and 12.0% Cr(VI)) in 60 min. Another one is the improvement of photocatalytic performance. Under visible-light irradiation, the cloth shows excellent photocatalytic ability (88.4%/98.4%) of removing LVFX and Cr(VI), which is 1.6-2.7 times higher than that by CFs/MoS2 cloth (56.3% LVFX and 36.9% Cr(VI)) within 120 min. Furthermore, efficient and low-cost CFs/MoS₂/UiO-66-NH₂ cloth can be easily taken out and used, and there are no obvious changes in their crystalline phase/morphologies and shows slight negative influence on photocatalytic activity during four-cycle tests. Meanwhile, in the economical dimension, the efficient, low-cost and recyclable CFs/MoS2/UiO-66-NH2 cloth can greatly save economic costs while retaining high efficiency. In the future work, more effort will be put on developing new methods to continuously grow MoS₂/UiO-66-NH₂ junctions on ultralong CFs, and then these obtained CFs/MoS₂/UiO-66-NH₂ fiber can be weaved to large-area three-dimensional fabrics as photocatalytic membrane to purify the flowing wastewater under visible light irradiation. Therefore, our work provides new ideas for constructing semiconductor/MOFs-based heterojunction on CF for photocatalytic degradation of contaminants in water.

CRediT authorship contribution statement

Wei Cao: Investigation, Methodology, Writing - original draft. Yan Zhang: Investigation, Methodology, Writing - original draft. Zhun Shi: Investigation. Ting Liu: Investigation. Xinshan Song: . Lisha Zhang: Funding acquisition, Project administration. Po Keung Wong: . Zhigang Chen: Project administration.

Declaration of Competing Interest

The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51972056, 51773036), National Key Research and Development Program of China (2019YFC0408604), Shanghai Shuguang Program (18SG29), Natural Science Foundation of Shanghai (18ZR1401700), Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-03-E00055), the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (CUSF-DH-D-2020070), and DHU Distinguished Young Professor Program.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cej.2020.128112.

References

- [1] W. Wang, Q. Niu, G. Zeng, C. Zhang, D. Huang, B. Shao, C. Zhou, Y. Yang, Y. Liu, H. Guo, W. Xiong, L. Lei, S. Liu, H. Yi, S. Chen, X. Tang, 1D porous tubular g-C₃N₄ capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction, Appl. Catal. B: Environ. 273 (2020), 119051, https://doi.org/10.1016/j. apcatb.2020.119051.
- [2] S. Wu, H. He, X. Li, C. Yang, G. Zeng, B. Wu, S. He, L. Lu, Insights into atrazine degradation by persulfate activation using composite of nanoscale zero-valent iron and graphene: performances and mechanisms, Chem. Eng. J. 341 (2018) 126–136, https://doi.org/10.1016/j.cej.2018.01.136.
- [3] K. Zhang, Y. Xue, J. Zhang, X. Hu, Removal of lead from acidic wastewater by biomineralized bacteria with pH self-regulation, Chemosphere 241 (2020), 125041, https://doi.org/10.1016/j.chemosphere.2019.125041.
- [4] Z. Lv, X. Tan, C. Wang, A. Alsaedi, T. Hayat, C. Chen, Metal-organic frameworksderived 3D yolk shell-like structure Ni@carbon as a recyclable catalyst for Cr(VI) reduction, Chem. Eng. J. 389 (2020), 123428, https://doi.org/10.1016/j. cei.2019.123428.
- [5] X.-D. Du, X.-H. Yi, P. Wang, W. Zheng, J. Deng, C.-C. Wang, Robust photocatalytic reduction of Cr(VI) on UiO-66-NH₂(Zr/Hf) metal-organic framework membrane under sunlight irradiation, Chem. Eng. J. 356 (2019) 393–399, https://doi.org/ 10.1016/j.cej.2018.09.084.
- [6] Z. Shi, Y. Zhang, X. Shen, G. Duoerkun, B. Zhu, L. Zhang, M. Li, Z. Chen, Fabrication of g-C₃N₄/BiOBr heterojunctions on carbon fibers as weaveable photocatalyst for degrading tetracycline hydrochloride under visible light, Chem. Eng. J. 386 (2020), 124010, https://doi.org/10.1016/j.cej.2020.124010.
- [7] L. Zeng, S. Li, X. Li, J. Li, S. Fan, X. Chen, Z. Yin, M. Tade, S. Liu, Visible-lightdriven sonophotocatalysis and peroxymonosulfate activation over 3D urchin-like MoS₂/C nanoparticles for accelerating levofloxacin elimination: Optimization and kinetic study, Chem. Eng. J. 378 (2019), 122039, https://doi.org/10.1016/j. cei.2019.122039.
- [8] G. Duoerkun, Y. Zhang, Z. Shi, X. Shen, W. Cao, T. Liu, J. Liu, Q. Chen, L. Zhang, Construction of n-TiO₂/p-Ag₂O junction on carbon fiber cloth with vis–nir photoresponse as a filter-membrane-shaped photocatalyst, Adv. Fiber Mater. 2 (1) (2020) 13–23, https://doi.org/10.1007/s42765-019-00025-8.

- [9] T. Hou, Q. Li, Y. Zhang, W. Zhu, K. Yu, S. Wang, Q. Xu, S. Liang, L. Wang, Nearinfrared light-driven photofixation of nitrogen over Ti₃C₂Tx/TiO₂ hybrid structures with superior activity and stability, Appl. Catal. B: Environ. 273 (2020), 119072, https://doi.org/10.1016/j.apcatb.2020.119072.
- [10] M. Abinaya, K. Govindan, M. Kalpana, K. Saravanakumar, S.L. Prabavathi, V. Muthuraj, A. Jang, Reduction of hexavalent chromium and degradation of tetracycline using a novel indium-doped Mn₂O₃ nanorod photocatalyst, J. Hazard. Mater. 397 (2020), 122885, https://doi.org/10.1016/j.jhazmat.2020.122885.
- [11] J. Liu, H. Lin, Y. He, Y. Dong, E.R.G.Y. Menzembere, Novel CoS₂/MoS₂@Zeolite with excellent adsorption and photocatalytic performance for tetracycline removal in simulated wastewater, J. Clean. Prod. 260 (2020), 121047, https://doi.org/ 10.1016/j.jclepro.2020.121047.
- [12] B. Xia, F. Deng, S. Zhang, L. Hua, X. Luo, M. Ao, Design and synthesis of robust Z-scheme ZnS-SnS₂ n-n heterojunctions for highly efficient degradation of pharmaceutical pollutants: performance, valence/conduction band offset photocatalytic mechanisms and toxicity evaluation, J. Hazard. Mater. 392 (2020), 122345, https://doi.org/10.1016/j.jhazmat.2020.122345.
- [13] S. Raha, M. Ahmaruzzaman, Enhanced performance of a novel superparamagnetic g-C₃N₄/NiO/ZnO/Fe₃O₄ nanohybrid photocatalyst for removal of esomeprazole: Effects of reaction parameters, co-existing substances and water matrices, Chem. Eng. J. 395 (2020), 124969, https://doi.org/10.1016/j.cej.2020.124969.
- [14] S. Adhikari, S. Mandal, D.-H. Kim, Z-scheme 2D/1D MoS₂ nanosheet-decorated Ag₂Mo₂O₇ microrods for efficient catalytic oxidation of levofloxacin, Chem. Eng. J. 373 (2019) 31–43, https://doi.org/10.1016/j.cej.2019.05.017.
- [15] T. Li, Y. Gao, L. Zhang, X. Xing, X. Huang, F. Li, Y. Jin, C. Hu, Enhanced Cr(VI) reduction by direct transfer of photo-generated electrons to Cr 3d orbitals in CrO₄²-intercalated BiOBr with exposed (110) facets, Appl. Catal. B: Environ. 277 (2020), 119065, https://doi.org/10.1016/j.apcatb.2020.119065.
- [16] M. Ratova, J. Redfern, J. Verran, P.J. Kelly, Highly efficient photocatalytic bismuth oxide coatings and their antimicrobial properties under visible light irradiation, Appl. Catal. B: Environ. 239 (2018) 223–232, https://doi.org/10.1016/j. aocatb.2018.08.020.
- [17] Z. Li, H. Yang, L. Zhang, R. Liu, Y. Zhou, Stainless steel mesh-supported threedimensional hierarchical SnO₂/Zn₂SnO₄ composite for the applications in solar cell, gas sensor, and photocatalysis, Appl. Surf. Sci. 502 (2020), 144113, https:// doi.org/10.1016/j.apsusc.2019.144113.
- [18] H. Zhao, L. Zhang, X. Gu, S. Li, B.o. Li, H. Wang, J. Yang, J. Liu, Fe₂O₃–AgBr nonwoven cloth with hierarchical nanostructures as efficient and easily recyclable macroscale photocatalysts, RSC Adv. 5 (15) (2015) 10951–10959, https://doi.org/ 10.1039/C4RA13254H.
- [19] S. Li, L. Zhang, H. Wang, Z. Chen, J. Hu, K. Xu, J. Liu, Ta₃N₅-Pt nonwoven cloth with hierarchical nanopores as efficient and easily recyclable macroscale photocatalysts, Sci. Rep. 4 (2014) 3978, https://doi.org/10.1038/srep03978.
- [20] Y. Zhang, G. Duoerkun, Z. Shi, W. Cao, T. Liu, J. Liu, L. Zhang, M. Li, Z. Chen, Construction of TiO₂/Ag₃PO₄ nanojunctions on carbon fiber cloth for photocatalytically removing various organic pollutants in static or flowing wastewater, J. Colloid Interface Sci. 571 (2020) 213–221, https://doi.org/ 10.1016/j.jcis.2020.03.049.
- [21] L.i. Luo, X. Shen, L. Song, Y. Zhang, B.o. Zhu, J. Liu, Q. Chen, Z. Chen, L. Zhang, MoS₂/Bi₂S₃ heterojunctions-decorated carbon-fiber cloth as flexible and filtermembrane-shaped photocatalyst for the efficient degradation of flowing wastewater, J. Alloy. Compd. 779 (2019) 599–608, https://doi.org/10.1016/j. jallcom.2018.11.154.
- [22] S. Li, J. Cui, X. Wu, X. Zhang, Q.i. Hu, X. Hou, Rapid in situ microwave synthesis of Fe₃O₄@MIL-100(Fe) for aqueous diclofenac sodium removal through integrated adsorption and photodegradation, J. Hazard. Mater. 373 (2019) 408–416, https:// doi.org/10.1016/j.jhazmat.2019.03.102.
- [23] M. Alvaro, E. Carbonell, B. Ferrer, F. LlabrésiXamena, H. Garcia, Semiconductor Behavior of a Metal-Organic Framework (MOF), Chem. Eur. J. 13 (18) (2007) 5106–5112, https://doi.org/10.1002/chem.200601003.
- [24] J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc. 130 (42) (2008) 13850–13851, https://doi.org/10.1021/ja8057953.
- [25] L. Shen, W. Wu, R. Liang, R. Lin, L. Wu, Highly dispersed palladium nanoparticles anchored on UiO-66(NH₂) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst, Nanoscale 5 (19) (2013) 9374, https://doi.org/10.1039/c3nr03153e.
- [26] Y. Pan, X. Yuan, L. Jiang, H. Wang, H. Yu, J. Zhang, Stable self-assembly AgI/UiO-66(NH₂) heterojunction as efficient visible-light responsive photocatalyst for tetracycline degradation and mechanism insight, Chem. Eng. J. 384 (2020), 123310, https://doi.org/10.1016/j.cej.2019.123310.
- [27] N. Liu, W. Huang, M. Tang, C. Yin, B. Gao, Z. Li, L. Tang, J. Lei, L. Cui, X. Zhang, Insitu fabrication of needle-shaped MIL-53(Fe) with 1T-MoS₂ and study on its enhanced photocatalytic mechanism of ibuprofen, Chem. Eng. J. 359 (2019) 254–264, https://doi.org/10.1016/j.cej.2018.11.143.
- [28] J. Qiu, X. Zhang, K. Xie, X.-F. Zhang, Y.i. Feng, M. Jia, J. Yao, Noble metal nanoparticle-functionalized Zr-metal organic frameworks with excellent photocatalytic performance, J. Colloid Interface Sci. 538 (2019) 569–577, https:// doi.org/10.1016/j.jcis.2018.12.024.
- [29] X. Hu, S. Lu, J. Tian, N. Wei, X. Song, X. Wang, H. Cui, The selective deposition of MoS₂ nanosheets onto (101) facets of TiO₂ nanosheets with exposed (001) facets and their enhanced photocatalytic H₂ production, Appl. Catal. B: Environ. 241 (2019) 329–337, https://doi.org/10.1016/j.apcatb.2018.09.051.

evolution, Inorg. Chem. 59 (14) (2020) 9824–9837, https://doi.org/10.1021/acs. inorgchem.0c01030.s001.

- [31] Y. Zhang, L.i. Luo, Z. Shi, X. Shen, C. Peng, J. Liu, Z. Chen, Q. Chen, L. Zhang, Synthesis of MoS₂/CdS heterostructures on carbon-fiber cloth as filter-membraneshaped photocatalyst for purifying the flowing wastewater under visible-light illumination, ChemCatChem 11 (12) (2019) 2855–2863, https://doi.org/10.1002/ cctc.201900542.
- [32] S. Wan, M. Ou, Q. Zhong, X. Wang, Perovskite-type CsPbBr₃ quantum dots/UiO-66 (NH₂) nanojunction as efficient visible-light-driven photocatalyst for CO₂ reduction, Chem. Eng. J. 358 (2019) 1287–1295, https://doi.org/10.1016/j. cej.2018.10.120.
- [33] Z. Shi, P. Xu, X. Shen, Y. Zhang, L.i. Luo, G. Duoerkun, L. Zhang, TiO₂/MoS₂ heterojunctions-decorated carbon fibers with broad-spectrum response as weaveable photocatalyst/photoelectrode, Mater. Res. Bull. 112 (2019) 354–362, https://doi.org/10.1016/j.materresbull.2019.01.005.
- [34] F. Guo, X. Huang, Z. Chen, H. Ren, M. Li, L. Chen, MoS₂ nanosheets anchored on porous ZnSnO₃ cubes as an efficient visible-light-driven composite photocatalyst for the degradation of tetracycline and mechanism insight, J. Hazard. Mater. 390 (2020), 122158, https://doi.org/10.1016/j.jhazmat.2020.122158.
- [35] X. Wang, X. Zhao, D. Zhang, G. Li, H. Li, Microwave irradiation induced UIO-66-NH₂ anchored on graphene with high activity for photocatalytic reduction of CO₂, Appl. Catal. B: Environ. 228 (2018) 47–53, https://doi.org/10.1016/j. apcatb.2018.01.066.
- [36] A. Wang, Z. Zheng, H. Wang, Y. Chen, C. Luo, D. Liang, B. Hu, R. Qiu, K. Yan, 3D hierarchical H₂-reduced Mn-doped CeO₂ microflowers assembled from nanotubes as a high-performance Fenton-like photocatalyst for tetracycline antibiotics degradation, Appl. Catal. B: Environ. 277 (2020), 119171, https://doi.org/ 10.1016/j.apcatb.2020.119171.
- [37] P. Xu, X. Shen, L. Luo, Z. Shi, Z. Liu, Z. Chen, M. Zhu, L. Zhang, Preparation of TiO₂/Bi₂WO₆ nanostructured heterojunctions on carbon fibers as a weaveable visible-light photocatalyst/photoelectrode, Environ, Sci. Nano 5 (2018) 327–337, https://doi.org/10.1039/c7en00822h.
- [38] Y. Li, B. Sun, H. Lin, Q. Ruan, Y. Geng, J. Liu, H. Wang, Y. Yang, L. Wang, K.C. Tam, Efficient visible-light induced H₂ evolution from T-Cd_xZn_{1,x}S/defective MoS₂ nanohybrid with both bulk twinning homojunctions and interfacial heterostructures, Appl. Catal. B: Environ. 267 (2020), 118702, https://doi.org/10.1016/j. apcatb.2020.118702.
- [39] Y. Zhang, L. Wang, S. Park, X. Kong, X. Lan, Z. Song, J. Shi, Single near-infraredlaser driven Z-scheme photocatalytic H₂ evolution on upconversion material@ Ag₃PO₄@black phosphorus, Chem. Eng. J. 375 (2019), 121967, https://doi.org/ 10.1016/j.cej.2019.121967.
- [40] S. Bolar, S. Shit, J.S. Kumar, N.C. Murmu, R.S. Ganesh, H. Inokawa, T. Kuila, Optimization of active surface area of flower like MoS₂ using V-doping towards enhanced hydrogen evolution reaction in acidic and basic medium, Appl. Catal. B: Environ. 254 (2019) 432–442, https://doi.org/10.1016/j.apcatb.2019.04.028.
- [41] Y. Zhang, W. Cui, W. An, L. Liu, Y. Liang, Y. Zhu, Combination of photoelectrocatalysis and adsorption for removal of bisphenol A over TiO₂graphene hydrogel with 3D network structure, Appl. Catal. B: Environ. 221 (2018) 36–46, https://doi.org/10.1016/j.apcatb.2017.08.076.
- [42] J. Zhou, W. Liu, W. Cai, The synergistic effect of Ag/AgCl@ZIF-8 modified g-C₃N₄ composite and peroxymonosulfate for the enhanced visible-light photocatalytic degradation of levofloxacin, Sci. Total Environ. 696 (2019), 133962, https://doi.org/10.1016/j.scitotenv.2019.133962.
- [43] L. Li, C. Niu, H. Guo, J. Wang, M. Ruan, L. Zhang, C. Liang, H. Liu, Y. Yang, Efficient degradation of levofloxacin with magnetically separable ZnFe₂O₄/NCDs/ Ag₂CO₃ Z-scheme heterojunction photocatalyst: Vis-NIR light response ability and mechanism insight, Chem. Eng. J. 383 (2020), 123192, https://doi.org/10.1016/j. cej.2019.123192.
- [44] L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, Multifunctional NH₂-mediated zirconium metal–organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(vi), Dalton Trans. 42 (37) (2013) 13649, https://doi.org/10.1039/c3dt51479j.
- [45] C. Liang, C. Niu, L. Zhang, X. Wen, S. Yang, H. Guo, G. Zeng, Construction of 2D heterojunction system with enhanced photocatalytic performance: Plasmonic Bi and reduced graphene oxide co-modified Bi₅O₇I with high-speed charge transfer channels, J. Hazard. Mater. 361 (2019) 245–258, https://doi.org/10.1016/j. jhazmat.2018.08.099.
- [46] R. Liang, L. Shen, F. Jing, W. Wu, N. Qin, R. Lin, L. Wu, NH₂-mediated indium metal-organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr(VI), Appl. Catal. B: Environ. 162 (2015) 245–251, https://doi.org/10.1016/j.apcatb.2014.06.049.
- [47] S.G. Fard, M. Haghighi, M. Shabani, Facile one-pot ultrasound-assisted solvothermal fabrication of ball-flowerlike nanostructured (BiOBr)_x(Bi₇O₉I₃)_(1-x) solid-solution for high active photodegradation of antibiotic levofloxacin under sun-light, Appl. Catal. B: Environ. 248 (2019) 320–331, https://doi.org/10.1016/j. apcatb.2019.02.021.
- [48] N. Sunsandee, S. Phatanasri, P. Ramakul, U. Pancharoen, Thermodynamic parameters and isotherm application on enantiomeric separation of levofloxacin using hollow fiber supported liquid membrane system, Sep. Purif. Technol. 195 (2018) 377–387, https://doi.org/10.1016/j.seppur.2017.12.034.
- [49] M. Zhang, C. Lai, B. Li, D. Huang, G. Zeng, P. Xu, L. Qin, S. Liu, X. Liu, H. Yi, M. Li, C. Chu, Z. Chen, Rational design 2D/2D BiOBr/CDs/g-C₃N₄ Z-scheme heterojunction photocatalyst with carbon dots as solid-state electron mediators for enhanced visible and NIR photocatalytic activity: Kinetics, intermediates, and mechanism insight, J. Catal. 369 (2019) 469–481, https://doi.org/10.1016/j. jcat.2018.11.029.