Insights into biomonitoring of human exposure to polycyclic aromatic hydrocarbons with hair analysis: A case study in e-waste recycling area

Meiqing Lina,b,c, Jian Tangb, Shengtao Mab,d, Yingxin Yub, Guiying Lib, Ruifang Fane, Bixian Maia, Taicheng Ana,b,*

a State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 Guangdong, China
b Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
c University of Chinese Academy of Sciences, Beijing 100049, China
d Synergy Innovation Institute of GDUT, Shantou 515100, China
e Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, 510631, China

\textbf{A R T I C L E I N F O}

Handling Editor: Da Chen
Keywords:
Hair analysis
Human biomonitoring
Polycyclic aromatic hydrocarbons
Hydroxylated polycyclic aromatic hydrocarbons
E-waste exposure

\textbf{A B S T R A C T}

In this study, 96 pairs of hair and urine samples were collected from e-waste (EW) dismantling workers of an industrial park, as well as residents living in surrounding areas. The concentrations of polycyclic aromatic hydrocarbons (PAHs) and hydroxylated PAH metabolites (OH-PAHs) were analyzed. The results show that concentrations of Σ_{17}PAHs ranged from 6.24 to 692 ng/g dry weight (dw) and Σ_{12}OH-PAHs from undetected to 187 ng/g dw in hair external (hair-Ex), and ranged from 31.7 to 738 ng/g dw and 21.6 to 1887 ng/g dw in hair internal (hair-In). There was no significant difference in exposure levels between EW dismantling workers and residents of the surrounding area. For the parent PAHs, the concentrations of Σ_{17}PAHs of hair-In were comparable with those of hair-Ex for all populations except for the child residents. On the contrary, for the OH-PAHs, the concentrations of Σ_{12}OH-PAHs of hair-In were 9–37 times higher than those of hair-Ex for populations. Moreover, the congener profiles of OH-PAHs of hair-In were different from those of hair-Ex, but similar to that of urine. Particularly, 3-OH-Bap, which is a carcinoigenic metabolite, was only detected in the hair-In. These results indicate that OH-PAHs in hair-In, just like in urine, are mainly derived from endogenous metabolism and could be considered as reliable biomarkers for PAHs exposure. However, there was almost no significant correlations between hair-In and urine for OH-PAHs. This indicates that more attention should be paid to OH-PAHs when conducting PAHs exposure risk assessment using hair, which will help to obtain more reliable and comprehensive information on health risk assessments.

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are associated with various cancers, inflammation and respiratory disease in humans (Koike et al., 2014; Luo et al., 2015; Podechard et al., 2008). Many studies have reported the levels of PAHs in various environmental media and accordingly assessed their exposure levels and human health risk. However, the equivalent exposure risk to humans may be overestimated or underestimated due to the differences in bioavailability and pharmacokinetic properties of the compounds (Calafat et al., 2005; Fent, 2004).

Over the last few decades, a series of reliable methods have been developed to assess the level and hazard for human PAHs exposure. For instance, PAH–DNA adducts that form in white blood cells were used to estimate the biologically effective dose and genotoxic effects of PAHs (Demetriou et al., 2012; Yi et al., 2015). Urinary hydroxylated PAH metabolites (OH-PAHs) were used for human biomonitoring of PAHs exposure (Morykin et al., 2015). However, the levels of PAHs and their blood or urine metabolites indicate only recent exposure due to the generally short half-lives of these compounds (Li et al., 2012). Recently, hair was introduced as a potential bioindicator to assess human exposure to PAHs owing to its stability, non-invasive collection and wider detection window.

Many studies have achieved and confirmed that human hair can be a useful indicator for evaluating the exposure to PAHs. Toriba et al. first developed a method for PAHs quantification in human hair and...
subsequently reported the hair PAHs concentrations in smokers and non-smokers (Toriba et al., 2003). Since then, several studies have been done to investigate the association of PAHs concentration between the environment matrix and human hair (Hasei et al., 2011; Wang et al., 2013a; Wang et al., 2013b). OH-PAHs were first investigated in human hair by Schummmer et al. (2009). Recently, both parent PAHs and their metabolites were simultaneously measured in human hair due to improved analytical sensitivity (Palazzi et al., 2019, 2018), which provides more comprehensive information on PAHs exposure and the human health risk. In addition, to confirm the incorporation of OH-PAHs in hair, rat models were established to analyze 52 OH-PAHs in hair after intraperitoneal administration of the corresponding 12 parent PAHs (Grova et al., 2013). The results found a linkage of the PAH metabolite levels between hair and urine in the rat models. This showed that the monitoring of OH-PAHs in urine and hair allows for the appraisal of internal PAH exposure on an animal model under controlled external exposure (Grova et al., 2018). However, the association between hair and urine needs to be further confirmed with human samples due to the differences in the species.

PAHs can be generated by anthropogenic activities, such as incomplete burning of coal, wood biomass and waste. The electronic-waste (EW) recycling and dismantling industry has been active in China since 1990s. A great variety of toxic chemicals, including PAHs, escape into the environment during the dismantling of EW. Within the EW dismantling areas, high concentrations of PAHs are present in the air, soil, sediments and biological samples, including fish muscle and human samples, such as human blood, placenta, breast milk, umbilical cord blood and urine (Asamoah et al., 2019; Shi et al., 2016; Wang et al., 2012; Xu et al., 2015, 2013; Yu et al., 2006; Zhang et al., 2011; Zheng et al., 2016). Moreover, human hair has been used to assess the exposure of polyhalogenated aromatic hydrocarbons in EW areas (Ma et al., 2011; Zhao et al., 2008; Zheng et al., 2011; Zheng et al., 2010), while little data is available on the simultaneous assessment of PAHs and its metabolites in hair samples from these areas.

In addition, the difference between external and internal exposure of PAHs and OH-PAHs in hair is still unclear. Researchers have made great efforts to develop washing procedures to differentiate between internal and external pollutants, which is the major difficulty for hair analysis. Recently, our research group developed a reliable method to separately measure the levels of compounds in hair external (hair-Ex) and hair internal (hair-In) (Lin et al., 2019).

In this study, pairs of human hair and urine samples were collected from an EW dismantling area. Parent PAHs (n = 16) and OH-PAHs (n = 12) in both external and internal hair, as well as 12 OH-PAHs in urine samples, were analyzed. The objective was to assess the levels and patterns of the PAHs and OH-PAHs in hair-Ex, hair-In and urine from different populations, namely workers at the EW dismantling industrial park and residents (including adults and children) of surrounding areas. To validate the utility of hair as a bioindicator of internal exposure to OH-PAHs, the levels and profiles of PAHs and OH-PAHs in hair-In were then compared with those in hair-Ex and urine using partial least squares discriminant analysis (PLS-DA) and Spearman correlation analysis.

2. Materials and methods

2.1. Sample collection

Pairs of hair and urine samples were collected from 96 people in an EW recycling area in South China. The participants included 27 EW workers who directly engaged in EW dismantling activities, 29 non-EW workers who engaged in other activities at the EW dismantling industrial park and 40 residents living in the surrounding area (21 adults, >14 years old; and 19 children, ≤14 years old). A detailed description of the sampling site has been provided elsewhere (Chen et al., 2019). The study was approved by the Ethics Committee of South China Normal University. Consent was also obtained from all participants after they were clearly informed about the purpose of this study. For each participant, a short questionnaire and general physical examination were conducted and their demographics are listed in Table S1. During routine haircut sessions, approximately 2–3 g of hair was cut and collected using stainless steel scissors; wrapped in aluminum foil; and then sealed in polyethylene zip bags. The morning urine samples were collected and stored in polyethylene bottles and the creatinine concentration of each urine sample was determined immediately. The collected urine and hair samples were transferred to the laboratory and kept at −80 °C until chemical analysis. The hair and urine collection were finished within two days.

2.2. Chemicals and reagents

Sixteen PAHs and five surrogate standards were obtained from AccuStandard Inc. (New Heaven, USA). Twelve OH-PAHs and five internal standards were purchased from AccuStandard Inc., Dr. Ehrenstorfer (Augsburg, Germany), Chiron AS (Trondheim, Norway) and Toronto Research Chemicals, Inc. (North York, Canada). Hexane (Hex), methyl tert-butyl ether (MTBE), dichloromethane (DCM), acetone, ethyl acetate (EtAc), acetic acid (HAc) and sodium acetate (NaAc) were purchased from CNW (Technologies GmbH). Methanol was obtained from Merck (Darmstadt, Germany). Other reagents of pesticide residue grade or HPLC grade were used without further purification. All other chemicals and reagents are shown in Supplementary Information Text S1.

2.3. Sample preparation and analysis

The extraction and cleanup procedures of hair-In, hair-Ex and urine samples are provided in our previous study (Fan et al., 2012; Lin et al., 2019).

The sixteen parent PAHs were analyzed by gas chromatography– triple quadrupole mass spectrometry (Shimadzu TQ8040, Kyoto, Japan) using electron impact ionization. PAHs were chromatographically separated with a DB-5MS capillary column (30 m × 0.25 mm i.d., 0.25 μm film thickness, Agilent Technologies). The twelve OH-PAHs were analyzed using an Agilent 1260 Infinity II HPLC coupled with a 6470 triple quadrupole mass spectrometer. The HPLC was equipped with a G7116A MCT, a G7129A vial sampler, and a G7112B binary pump. A Poroshell 120 EC-C18 reversed-phase analytical column (100 mm × 4.6 mm i.d., 2.7 μm particle diameter, Agilent Technologies) was used to separate the different OH-PAHs. The detailed analytical parameters of the instruments are presented in Supplementary Information Text S2. The typical chromatograms of PAHs and OH-PAHs from hair-Ex and hair-In samples were shown in Supplementary Information Figs. S1 and S2.

2.4. Quality assurance and quality control

Instrumental quality control (QC) included injection of solvent blanks and standard solutions with every batch of 10 field samples. For the method QC, procedural blanks and spiked matrices were processed with every batch of 10 filed samples. The target analytes were confirmed at below 5% in the blanks. The recovery of the target compounds in the standard spiked samples was 64.3%-136% for PAHs (expect for Nap in hair), 86.7%-143% for OH-PAHs in hair and 49.0%-145% for OH-PAHs in urine. The recovery of the surrogate standards in field samples was 86.3 ± 21.1% for acenaphthene-d10, 90.1 ± 18.3% for phenanthrene-d10, 70.0 ± 23.6% for chrysene-d12 and 71.5 ± 12.6% for perylene-d12. Concentrations that were lower than the limit of detection (LOD), or not detected, were assigned a value of zero. The concentrations of the target compounds in the field samples were not corrected by the recovery but the corresponding procedural blank within the same batch was subtracted. In this study, Nap will not...
Table 1
Concentrations of parent PAHs in hair-Ex and hair-In (ng/g dw).

<table>
<thead>
<tr>
<th>PAH</th>
<th>Hair-Ex Mean (range)</th>
<th>Hair-In Mean (range)</th>
<th>Freq.</th>
<th>Hair-Ex Mean (range)</th>
<th>Hair-In Mean (range)</th>
<th>Freq.</th>
<th>Freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acy</td>
<td>0.04 (0.03 – 0.10)</td>
<td>1.33 (0.36 – 4.49)</td>
<td>100%</td>
<td>0.01 (0.03 – 0.10)</td>
<td>1.20 (0.44 – 4.90)</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Ace</td>
<td>4.83 (1.13 – 16.1)</td>
<td>4.06 (1.30 – 11.9)</td>
<td>30%</td>
<td>3.09 (3.05 – 11.9)</td>
<td>2.66 (0.24 – 5.5)</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Flu</td>
<td>1.77 (0.14 – 4.10)</td>
<td>1.51 (0.35 – 2.5)</td>
<td>100%</td>
<td>0.89 (0.35 – 2.5)</td>
<td>0.77 (0.24 – 2.5)</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>30.0 (17.0 – 53.0)</td>
<td>34.8 (20.0 – 53.0)</td>
<td>100%</td>
<td>26.2 (13.0 – 53.0)</td>
<td>30.0 (17.0 – 53.0)</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Ant</td>
<td>1.82 (nd – 14.4)</td>
<td>2.12 (0.14 – 10.6)</td>
<td>100%</td>
<td>1.57 (0.14 – 10.6)</td>
<td>2.12 (0.14 – 10.6)</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Flua</td>
<td>55.7 (4.98 – 41.1)</td>
<td>53.5 (8.77 – 32.0)</td>
<td>100%</td>
<td>53.5 (8.77 – 32.0)</td>
<td>55.7 (4.98 – 41.1)</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Chr</td>
<td>4.83 (1.13 – 16.1)</td>
<td>4.06 (1.30 – 11.9)</td>
<td>30%</td>
<td>3.09 (3.05 – 11.9)</td>
<td>2.66 (0.24 – 5.5)</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>BbF</td>
<td>4.83 (1.13 – 16.1)</td>
<td>4.06 (1.30 – 11.9)</td>
<td>30%</td>
<td>3.09 (3.05 – 11.9)</td>
<td>2.66 (0.24 – 5.5)</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>BkF</td>
<td>2.62 (0.21 – 9.80)</td>
<td>2.62 (0.21 – 9.80)</td>
<td>100%</td>
<td>2.62 (0.21 – 9.80)</td>
<td>2.62 (0.21 – 9.80)</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>BaP</td>
<td>3.18 (0.22 – 16.32)</td>
<td>3.18 (0.22 – 16.32)</td>
<td>100%</td>
<td>3.18 (0.22 – 16.32)</td>
<td>3.18 (0.22 – 16.32)</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>IcdP</td>
<td>2.90 (0.31 – 12.9)</td>
<td>2.90 (0.31 – 12.9)</td>
<td>100%</td>
<td>2.90 (0.31 – 12.9)</td>
<td>2.90 (0.31 – 12.9)</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>BghiP</td>
<td>4.30 (0.52 – 22.5)</td>
<td>4.30 (0.52 – 22.5)</td>
<td>100%</td>
<td>4.30 (0.52 – 22.5)</td>
<td>4.30 (0.52 – 22.5)</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Notes
- **Freq.**: Frequency detection.
- **Freq.**: Freq. detected.
- **Freq.**: Freq. not detected.
be discussed due to its relatively high volatility and bad recovery in all field samples.

2.5. Statistical analysis

The statistical differences in concentrations between different populations were assessed by the Mann-Whitney U test. A PLS-DA based on log-transformed data was performed to differentiate target analytes between hair-Ex from hair-In. Correlations between OH-PAH concentrations in hair and urine were also performed using Spearman correlation. During the statistical analysis, concentrations that were lower than the LOD, or not detected, were assigned a value of zero. A p-value < 0.05 was regarded as statistically significant.

3. Results and discussion

3.1. Concentrations of PAHs in hair

3.1.1. PAH levels and profiles in hair-Ex

Of the 15 PAHs, all were identified at a 100% detection frequency in hair-Ex for all subjects except for Flu and Ant (Table 1). The sum concentrations of the 15 PAHs (Σ15PAHs) in hair-Ex for all subjects ranged from 6.24 to 692 ng/g dry weight (dw). The highest level in hair-Ex was found in EW workers ranging from 20.8 to 692 ng/g dw (mean value: 194 ± 167 ng/g dw), followed by adult residents, non-EW workers and child residents with mean values of 169 ± 122, 161 ± 128 and 62.5 ± 52.3 ng/g dw, respectively. There was no significant difference in the Σ15PAH concentrations between the EW workers, non-EW workers and adult residents (p > 0.05), but the mean concentration of child residents was 2.5 to 3 times lower than that of other subjects (p < 0.001).

No significant difference was obtained in PAH congener profiles between the different populations (Fig. 1A). Flu was the most abundant PAH in hair-Ex accounting for 21%-29% of the Σ15PAHs. The concentration of Flu in hair-Ex was 55.7 ± 50.2 ng/g dw for EW workers, 46.1 ± 36.9 ng/g dw for non-EW workers, 51.2 ± 42.0 ng/g dw for adult residents and 15.6 ± 15.0 ng/g dw for child residents. The Flu concentration in children was 3 times lower than that for the other groups (p < 0.05). The second and third most abundant PAHs in hair-Ex were Pyr and Phe, accounting for 18%-25% and 13%-18% of the Σ15PAHs, respectively (Fig. 1A). Similarly, the concentrations of Pyr and Phe for child residents were approximately 3 times lower than those for other populations.

The high PAH concentrations in hair-Ex observed for EW workers and non-EW workers might be ascribed to the EW dismantling process, whereas other sources of PAHs, such as vehicle emissions, smoking and cooking, may primarily contribute to the high levels of PAHs in hair-Ex of the adult residents. Child residents those had less external exposure may be due to their mostly indoor activities. These results are in agreement with previous work demonstrating that the atmospheric PAH concentrations at this EW dismantling industrial park and roadside were significantly higher than those in the resident area (Chen et al., 2019). However, in our previous studies of atmospheric samples at the EW dismantling area, Phe was the most abundant PAH congener, follow by Flu and Pyr (Chen et al., 2019, 2016), which is inconsistent with the hair-Ex results. This may be attributed to the lower octanol-air partition coefficient (K_{OA}) of Phe, which is likely to be present in the gaseous phase (Zhang et al., 2011). Furthermore, it should be mentioned that the PAH levels in hair-Ex vary with the hair washing frequency. Therefore, PAH levels of hair-Ex were associated with short-term direct atmospheric precipitation as well as the physico-chemical properties of the PAHs.

3.1.2. PAH levels and profiles in hair-In

The 15 PAHs were identified with a high detection frequency ranging from 97% to 100% in hair-In of all subjects (Table 1). The Σ15PAHs concentrations in hair-In of all subjects ranged from 31.7 to 738 ng/g dw. The mean concentrations of the different populations were 199 ± 86.7 ng/g dw for EW workers, 157 ± 125 ng/g dw for non-EW workers, 152 ± 72.3 ng/g dw for adult residents and 131 ± 74.3 ng/g dw for child residents. The mean concentrations of PAHs in hair-In was ordered as follows: EW workers > non-EW workers > adult residents > child residents. However, the difference in the Σ15PAH concentrations of hair-In for EW workers and adult residents were not significant (p = 0.086), which is consistent with the results of hair-Ex. This indicates that EW dismantling activity is not the only source of PAHs exposure in this EW dismantling area. For instance, vehicle emissions could also be an important contribution (Chen et al., 2019). However, the Σ15PAHs concentrations of hair-In for the EW workers were significantly (p < 0.05) higher than those of non-EW workers. Our previous study also demonstrated that the total atmospheric PAHs concentration inside the EW workshop (where the EW workers are exposed) was higher than outside the EW workshop (where the non-EW workers are exposed) at the EW dismantling industrial park (Zhang et al., 2019).
Hair-Ex Mean (rang)
EW workers (n = 27) Non-EW workers (n = 29) Adult residents (n = 21) Child residents (n = 19) Total (n = 96)

<table>
<thead>
<tr>
<th>Chemical Abbreviation</th>
<th>EW workers</th>
<th>Non-EW workers</th>
<th>Adult residents</th>
<th>Child residents</th>
<th>Total</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-OH-Nap</td>
<td>0.17 (nd-2.56)</td>
<td>48.6 (nd-232)</td>
<td>7.01 (nd-54.9)</td>
<td>68.7 (2.62-204)</td>
<td>4.49 (nd-39.2)</td>
<td>141 (nd-1222)</td>
</tr>
<tr>
<td>2-OH-Nap</td>
<td>16.1 (nd-52.9)</td>
<td>175 (34.8-631)</td>
<td>18.8 (nd-88.9)</td>
<td>181 (15.5-652)</td>
<td>1.21 (nd-14.6)</td>
<td>84.1 (35.2-249)</td>
</tr>
<tr>
<td>2-OH-Flu</td>
<td>2.27 (nd-7.72)</td>
<td>18.6 (2.17-72.0)</td>
<td>2.30 (nd-5.28)</td>
<td>13.0 (2.71-33.2)</td>
<td>0.87 (nd-2.12)</td>
<td>1.06 (0.46-3.65)</td>
</tr>
<tr>
<td>2-OH-Phe</td>
<td>0.94 (nd-4.26)</td>
<td>6.40 (nd-20.6)</td>
<td>0.56 (nd-3.33)</td>
<td>4.89 (0.67-16.7)</td>
<td>0.23 (nd-1.01)</td>
<td>4.83 (1.57-14.6)</td>
</tr>
<tr>
<td>3-OH-Phe</td>
<td>0.08 (nd-0.42)</td>
<td>0.70 (nd-5.64)</td>
<td>0.02 (nd-0.50)</td>
<td>0.83 (nd-4.93)</td>
<td>0.04 (nd-0.71)</td>
<td>1.39 (nd-10.4)</td>
</tr>
<tr>
<td>4-OH-Phe</td>
<td>nd</td>
<td>0.70 (nd-5.64)</td>
<td>0.02 (nd-0.50)</td>
<td>0.83 (nd-4.93)</td>
<td>0.04 (nd-0.71)</td>
<td>1.39 (nd-10.4)</td>
</tr>
<tr>
<td>Σ16PAHs</td>
<td>17.9 ng/g dw</td>
<td>179 (20.6-348)</td>
<td>15.3 (18.9-32.9)</td>
<td>30.7 ± 17.8 ng/g dw</td>
<td>146 (0.71-367)</td>
<td>367 (21.6-1887)</td>
</tr>
</tbody>
</table>

Chemical Abbreviation: 1-hydroxy-naphthalene (1-OH-Nap), 2-hydroxy-naphthalene (2-OH-Nap), 2-hydroxy-fluorene (2-OH-Flu), 3-hydroxy-fluorene (3-OH-Flu), 1-hydroxy-phenanthrene (1-OH-Phe), 2-hydroxy-phenanthrene (2-OH-Phe), 3-hydroxy-phenanthrene (3-OH-Phe), 4-hydroxy-phenanthrene (4-OH-Phe), 9-hydroxy-phenanthrene (9-OH-Phe), 1-hydroxy-pyrene (1-OH-Pyr), 6-hydroxy-chrysene (6-OH-Chr) and 3-hydroxy-benzo[a]pyrene (3-OH-BaP).

a 1/9-OH-Phe: both 1- and 9-OH-Phe could not be separated chromatographically and were quantified together.

p-values: p < 0.05.
Thus, it was concluded that EW dismantling activity is not the sole source of PAHs at the EW dismantling area, and that the characteristic congener profile of PAHs in hair-Ex and hair-In are both associated with the exposure duration and physico-chemical properties of the PAHs.

3.2. The exposure concentration of OH-PAHs in hair

3.2.1. OH-PAH levels and profiles in hair-Ex

In hair-Ex, 2-OH-Flu and 3-OH-Phe were the most frequently detected species in 95% and 98% of all subjects, respectively, followed by 2-OH-Phe and 2-OH-Nap with the frequency detection of 71% and 66%, respectively (Table 2). In contrast, 1-OH-Pyr, 6-OH-Chr and 3-OH-BaP were never detected in hair-Ex. The sum concentrations of the 12 OH-PAHs (Σ12OH-PAHs) in hair-Ex ranged from not detected (nd) to 187 ng/g dw (mean value: 22.9 ± 31.7 ng/g dw). The mean concentrations for child residents was significantly lower (p < 0.05) than that for other populations, which is in line with the results of the parent PAHs in hair-Ex. OH-PAHs can be produced from coal combustion, traffic emissions and biomass burning, as well as by secondary formation in the atmosphere (Lin et al., 2015). The high OH-PAH concentrations in hair-Ex of EW workers and non-EW workers could be attributed to the EW dismantling process; however, the OH-PAH concentrations in hair-Ex of adult residents maybe from frequent exposure to other emission sources of OH-PAHs during their daily life.

For EW workers, non-EW workers and adult residents, 2-OH-Nap was the most abundant OH-PAH congener in hair-Ex, accounting for 54% of the total OH-PAHs, with a mean concentration of 216 ± 286, 289 ± 231, 367 ± 400 and 186 ± 126 ng/g dw for adult residents and child residents. The sum concentrations of the 12 OH-PAHs (Σ12OH-PAHs) in hair-Ex of all subjects ranged from 21.6 to 1887 ng/g dw (mean value: 285 ± 256 ng/g dw). The Σ12OH-PAHs concentrations in hair-Ex of the EW workers, non-EW workers, adult residents and child residents were 286 ± 167, 289 ± 231, 367 ± 400 and 186 ± 126 ng/g dw, respectively, which were 9-37 times higher than the concentrations in hair-Ex. No significant differences were found in the OH-PAH concentrations of hair-Ex between EW workers, non-EW workers and adult residents.

The congener profiles of OH-PAHs were similar between the different populations (Fig. 2B). 2-OH-Nap was the most dominant PAH metabolite in hair-Ex, accounting for 47%-63% of the total OH-PAHs, with a mean concentration of 175 ± 98.0 ng/g dw for EW workers, 174 ± 160 ng/g dw for non-EW workers, 181 ± 152 ng/g dw for adult residents and 84.1 ± 54.6 ng/g dw for child residents. The second most dominant OH-PAH in hair-Ex was 1-OH-Nap, accounting for 16%-28% of the total OH-PAHs, with a mean concentration of 48.6 ± 49.2, 68.7 ± 62.3, 141 ± 257 and 55.5 ± 52.4 ng/g dw for EW workers, non-EW workers, adult residents and child residents, respectively.

The standard deviations of the Σ12OH-PAH concentrations of adult residents were much higher than those in hair-Ex of the EW workers, non-EW workers and child residents, explaining the lower standard deviations for their OH-PAH concentrations.

Limited studies are available on OH-PAHs determination in human hair. Although there are few studies to report the levels of PAH metabolites in human hair, low positive detection rates were obtained in earlier studies due to limited analytical sensitivity (Appenzeller and Tsatsakis, 2012; Schummer et al., 2009). The most abundant congener was observed for 2-OH-Nap in the hair of Chinese women (range from

3.2.2. OH-PAH levels and profiles in hair-In

Of the 12 OH-PAHs, 9 were identified at more than 90% detection frequency in hair-In (Table 2). Moreover, 2-OH-Nap, 2-OH-Flu and 3-OH-Phe were detected in 100%, while 1-OH-Pyr, 6-OH-Chr and 3-OH-BaP were detected in 91%, 76% and 41%, respectively, but were not detected in hair-Ex. The detection frequencies in hair-In were much higher than those in hair-Ex with the Σ12OH-PAHs concentrations of all subjects ranging from 21.6 to 1887 ng/g dw (mean value: 285 ± 256 ng/g dw). The Σ12OH-PAHs concentrations in hair-In of the EW workers, non-EW workers, adult residents and child residents were 286 ± 167, 289 ± 231, 367 ± 400 and 186 ± 126 ng/g dw, respectively, which were 9-37 times higher than the concentrations in hair-Ex. No significant differences were found in the OH-PAH concentrations of hair-In between EW workers, non-EW workers and adult residents.

The congener profiles of OH-PAHs were similar between the different populations (Fig. 2B). 2-OH-Nap was the most dominant PAH metabolite in hair-In, accounting for 47%-63% of the total OH-PAHs, with a mean concentration of 175 ± 98.0 ng/g dw for EW workers, 174 ± 160 ng/g dw for non-EW workers, 181 ± 152 ng/g dw for adult residents and 84.1 ± 54.6 ng/g dw for child residents. The second most dominant OH-PAH in hair-In was 1-OH-Nap, accounting for 16%-28% of the total OH-PAHs, with a mean concentration of 48.6 ± 49.2, 68.7 ± 62.3, 141 ± 257 and 55.5 ± 52.4 ng/g dw for EW workers, non-EW workers, adult residents and child residents, respectively.

The standard deviations of the Σ12OH-PAH concentrations of adult residents were much higher than those in hair-In of the EW workers, non-EW workers and child residents, explaining the lower standard deviations for their OH-PAH concentrations.

Limited studies are available on OH-PAHs determination in human hair. Although there are few studies to report the levels of PAH metabolites in human hair, low positive detection rates were obtained in earlier studies due to limited analytical sensitivity (Appenzeller and Tsatsakis, 2012; Schummer et al., 2009). The most abundant congener was observed for 2-OH-Nap in the hair of Chinese women (range from
When comparing hair-Ex with hair-In, significant differences in concentrations and congener profiles of OH-PAHs were observed. The ratios of OH-PAH to parent PAH were also significantly different between hair-Ex and hair-In (Fig. 3). The ratios of OH-Flu/Flu and OH-Phe/Phe for hair-In were 2.69 ± 1.92 and 0.38 ± 0.37, respectively, which were higher than those for hair-Ex (0.47 ± 0.92 and 0.15 ± 0.24, respectively). The ratios of 1-OH-Pyr/Pyr, 6-OH-Chr/Chr and 3-OH-Bap/Bap for hair-In were not available due to the zero detection frequencies of 1-OH-Pyr, 6-OH-Chr and 3-OH-Bap; however, their ratios for hair-Ex were 0.06 ± 0.07, 1.09 ± 1.48 and 1.97 ± 3.86, respectively. Therefore, the sources of OH-PAHs in hair-In were different from those in hair-Ex, and the ratios of OH-Flu/Flu, 6-OH-Chr/Chr and 3-OH-Bap/Bap in hair-In were greater than 1, and were comparable for the different populations. This suggests that a relative persistence of OH-Flu, 6-OH-Chr and 3-OH-Bap occurs in the human body. Therefore, the OH-PAHs of hair-In, especially the carcinogenic metabolite 3-OH-Bap, may provide some insights when investigating the major health risks from long-term PAH exposure.

Using the parent and metabolite PAH concentrations, our previously developed partial least-squares discriminant analysis (PLS-DA) method was used to separate chemicals of hair-Ex and hair-In (Fig. 4A). As shown in Fig. 4B, all OH-PAHs were located on the right side of the chart, which indicates a positive correlation with the internal exposure of hair. Furthermore, the value of variable importance of each OH-PAH for the projection was greater than 1 (Fig. S3), which further suggests that OH-PAHs can be considered as contributors to the internal exposure of hair. In other words, the OH-PAHs in hair-In were mainly derived from endogenous metabolism. Above all, it could be concluded that OH-PAHs are more reliable biomarkers than parent PAHs when hair is used as an indicator for PAHs exposure assessment.

3.3. OH-PAH levels and profiles in urine

Urine has been frequently used to measure OH-PAHs for PAHs exposure assessment due to the strong water solubility of OH-PAHs. Table S2 provides the levels of each OH-PAH in the paired urine samples, which are adjusted by the concentration of urinary creatinine. 1-OH-Nap, 2-OH-Nap, 2-OH-Flu, 2-OH-Phe and 3-OH-Bap had the highest detection frequency in 100% of the samples, follow by 1-OH-Pyr (98%) and 1/9-OH-Phe (97%), while 3-OH-BaP was not detected in all urine samples. The levels of Σ12-OH-PAHs of all subjects ranged from 0.52 to 155 μg/g creatinine, with a mean value of 31.5 ± 33.3 μg/g creatinine. The mean Σ12-OH-PAH concentrations in urine were 39.1 ± 38.5 μg/g creatinine for EW workers, 30.7 ± 22.9 μg/g creatinine for non-EW workers, 33.3 ± 37.0 μg/g creatinine for adult residents and 22.1 ± 31.2 μg/g creatinine for child residents. No significant difference was observed in the urinary Σ12-OH-PAH concentrations between the different populations (p > 0.05), expected between the EW workers and child residents. This was similar to the results of hair-In, in that no significant differences in the Σ12-OH-PAH concentrations were found between EW workers and non-EW workers and adult residents.

The congener profiles of urinary OH-PAHs were similar between the different populations (Fig. 2C). 2-OH-Nap was the predominant congener making up 45%-49% of the Σ12-OH-PAH concentrations, with a mean concentration of 17.6 ± 15.0 μg/g creatinine for EW workers, 15.0 ± 12.3 μg/g creatinine for non-EW workers, 16.4 ± 18.7 μg/g creatinine for adult residents and 10.6 ± 12.7 μg/g creatinine for child residents. 1-OH-Nap accounted for 37%-44% of the Σ12-OH-PAH concentrations, with a mean concentration of 16.4 ± 19.4, 13.5 ± 11.0, 14.3 ± 17.4 and 9.55 ± 20.0 μg/g creatinine for EW workers, non-EW workers, adult residents and child residents, respectively.

When comparing urine with hair, the profiles of OH-PAHs in urine were similar to those in hair-In, but different from those in hair-Ex. However, more PAH metabolites were detected in hair-In than in urine, including the carcinogenic metabolite 3-OH-BaP. This further indicates that the OH-PAHs in hair-In, just like in urine, are derived from the endogenous metabolism of parent PAHs.

3.4. The relationship between the OH-PAHs of hair-In and urine

The concentrations of Σ12-OH-PAHs were not significantly correlated between the hair-In and urine of EW workers (r = -0.156, p = 0.438), non-EW workers (r = 0.356, p = 0.063), adult residents (r = 0.359, p = 0.120) and child residents (r = 0.087, p = 0.724) (Table 3). For 2-OH-Nap, moderate positive correlations were found between hair-In and urine of non-EW workers (r = 0.403, p = 0.034) and adult residents (r = 0.374, p = 0.104), but only the correlation for non-EW workers was significant. The concentrations of 2-OH-Nap also insignificantly correlated between the hair-In and urine of both EW workers and child residents. Furthermore, for the rest of the individual OH-PAH concentrations, there was no significant correlation observed between hair-In and urine for the different populations (r = -0.382-0.376, p > 0.05). This might suggest differences in the biotransformation and enrichment behaviors of OH-PAHs between hair-In and urine, although the OH-PAHs of hair-In and urine are both from the endogenous metabolism of parent PAHs.

Many studies have reported that parent PAHs experience two phases of biotransformation after entering the human body (Grover, 1986). During phase I, the parent PAHs are metabolized into OH-PAHs. Then, they are rapidly detoxified to glucuronide and sulfate conjugates during phase II. The later metabolites are mostly excreted in urine and feces (Ramesh et al., 2004). Gaudreau et al. found that PAH metabolites were excreted either as free compounds or in conjugated form, with the later accounting for more than 90% of the total OH-PAH in urine samples (Gaudreau et al., 2016). Additionally, Schummer et al. suggested that hair does not contain or only contains a negligible level of...
glucuronidated metabolites when compared to hydroxylated compounds (Schummer et al., 2009). Therefore, the OH-PAHs in hair-In were probably from phase I metabolism.

Moreover, the concentrations of OH-PAHs in urine only represent recent exposure due to the short half-lives of OH-PAHs in human body. For example, the half-life of urinary 1-OH-Pyr in humans is estimated to be 6–35 h (Jongeneelen et al., 1990). The half-life of 2-OH-Nap is in the range of 4.9–12.2 h, and 2- and 3-OH-Flu have half-lives of 4.1 ± 1.1 h and 8.2 ± 4.1 h, respectively (St Helen et al., 2012). Moreover, urine samples are generally taken randomly, which is influenced by short-term variations in exposure. Li et al. investigated the variability of PAH metabolite concentrations in urine in the general population and the results showed that the within-week variability was 41%-60% and the within-day variability was 60%-84% (Li et al., 2010). Conversely, hair reflects long-term exposure due to its low growth rate and continuous incorporation into the hair shaft. The level in hair-In represents an average level of PAH exposure for a period. Therefore, the OH-PAH concentrations in urine did not match those in hair-In, resulting in a weak or non-significant correlation between urine and hair.

Similar results have been reported in hair and urine or other internal tissues. Grova et al. detected 26 OH-PAHs in hair and 33 OH-PAHs in urine using a rat model and found that only 3-OH-Chr presented a significant correlation (p < 0.001) between hair and urine (Grova et al., 2018). Sauve et al. found only a weak positive correlation in cortisol levels between hair and 24-hour urine of humans (r = 0.33, p = 0.0041) (Sauve et al., 2007).

Above all, the OH-PAHs of hair-In and urine reflect different toxicokinetic processes, which could be significant for exposure risk assessment of human health. For long-term exposure risk assessment, the OH-PAHs in hair-In are more reliable species than the OH-PAHs in urine for use as biomarkers for PAHs biomonitoring.

4. Conclusion

The present study analyzed the concentrations and exposure patterns of both PAHs and their hydroxylated metabolites in hair-In, hair-Ex and urine. Irrespective of the sample (hair-Ex, hair-In or urine) the concentrations of both Σ15PAHs and Σ12OH-PAHs of EW workers were comparable to those of non-EW workers and adult residents (p > 0.05). There were multiple sources of PAHs at this EW dismantling area, and the concentrations and congener profiles of the parent PAHs in hair-In were similar to those of hair-In for all populations, except for the child residents. Significant differences were found in the concentrations and congener profiles of OH-PAHs between hair-In and hair-Ex of all populations. Moreover, the OH-PAH congener profiles of hair-In and urine pairs were similar, suggesting that OH-PAHs are mainly derived from endogenous metabolism and are reliable biomarkers for hair analysis. Additionally, no significant correlations of OH-PAH concentrations between hair-In and urine were found for PAHs, which could be attributed to the difference in the representative exposure duration and biotransformation processes of OH-PAHs between hair-In and urine. These results suggest that more attention should be paid to metabolic compounds when conducting hair analysis. Finally, the toxicokinetic characteristics of OH-PAHs in hair-In need to be further confirmed and clarified, which will help to establish a more comprehensive PAHs exposure risk assessment system.

CRediT authorship contribution statement

Meiqing Lin: Formal analysis, Methodology, Writing-original draft.

Table 3

<table>
<thead>
<tr>
<th></th>
<th>EW workers</th>
<th>Non-EW workers</th>
<th>Adult residents</th>
<th>Child residents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>p</td>
<td>r</td>
<td>p</td>
</tr>
<tr>
<td>1-OH-Nap</td>
<td>−0.026</td>
<td>0.899</td>
<td>0.376</td>
<td>0.090</td>
</tr>
<tr>
<td>2-OH-Nap</td>
<td>−0.146</td>
<td>0.468</td>
<td>0.403</td>
<td>0.034</td>
</tr>
<tr>
<td>2-OH-Flu</td>
<td>0.127</td>
<td>0.528</td>
<td>0.320</td>
<td>0.097</td>
</tr>
<tr>
<td>2-OH-Phe</td>
<td>0.072</td>
<td>0.720</td>
<td>0.119</td>
<td>0.548</td>
</tr>
<tr>
<td>3-OH-Phe</td>
<td>0.198</td>
<td>0.323</td>
<td>0.237</td>
<td>0.224</td>
</tr>
<tr>
<td>3-OH-Chr</td>
<td>0.063</td>
<td>0.753</td>
<td>0.166</td>
<td>0.397</td>
</tr>
<tr>
<td>4-OH-Phe</td>
<td>0.257</td>
<td>0.195</td>
<td>0.040</td>
<td>0.839</td>
</tr>
<tr>
<td>1/9-OH-Phe</td>
<td>−0.063</td>
<td>0.753</td>
<td>0.013</td>
<td>0.947</td>
</tr>
<tr>
<td>1-OH-Pyr</td>
<td>0.203</td>
<td>0.310</td>
<td>0.096</td>
<td>0.626</td>
</tr>
<tr>
<td>6-OH-Chr</td>
<td>−0.237</td>
<td>0.233</td>
<td>0.138</td>
<td>0.483</td>
</tr>
<tr>
<td>Σ12OH-PAHs</td>
<td>−0.156</td>
<td>0.438</td>
<td>0.356</td>
<td>0.063</td>
</tr>
</tbody>
</table>

a 1/9-OH-Phe: both 1- and 9-OH-Phe could not be separated chromatographically and were quantified together.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by National Natural Science Foundation of China (41731279, 41425015, 41703092 and 21677094), Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT012032), The Innovation Team Project of Guangdong Provincial Department of Education, China (2017KKXCTD012) and Leading Scientific, Technical and Innovation Talents of Guangdong special support program (2016TX032094).

Appendix A

Supplementary material

Appendix B. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.envint.2019.105432.

References

Podschadl, N., Lecureur, V., Le Ferrec, E., Gueron, I., Saphrel, L., Gilot, D., Gordon, J.R., Lapente, V., Fardel, O., 2008. Interleukin-8 induction by the environmental contaminant benzo(a)pyrene is aryl hydrocarbon receptor-dependent and leads to lung inflammation. Toxicol. Lett. 177, 130–137.

