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Abstract 23 

In this study, the objective was mainly focusing on the mechanism investigation of 24 

ciprofloxacin (CIP) degradation by photocatalytic ozonation process which carried 25 

out by ozone and TiO2 with a low content of carbon-dots (CDs) under simulated 26 

sunlight irradiation. The physicochemical properties of the prepared photocatalysts 27 

were characterized by X-ray diffraction (XRD), transmission electron microscopy 28 

(TEM), scanning electron microscope (SEM) X-ray photoelectron spectroscopy (XPS) 29 

and zeta potential. Comprehensive investigation has proven the process to be efficient 30 

in the removal of CIP with high yield of reactive species (•OH, O2
•—, h+, etc.). Kinetic 31 

model on pH investigation found out a repulsive force between the photocatalysts and 32 

CIP intensified with the increasing pH, so did the production rate of hydroxyl radicals 33 

(•OH), while eventually reached a balance and achieved a maximum degradation rate. 34 

The results indicated that the enhancement mechanism was triggered by the 35 

photoexcited electron accumulated on CDs and transferred by ozone, resulting in the 36 

continuous generation of h+, O3
•— and O2

•—. Possible photocatalytic ozonation 37 

degradation pathways of CIP were proposed according to the identifications of 38 

intermediates using high-resolution accurate-mass spectrometry (HRAM) 39 

LC-MS/MS. 40 

 41 

Keywords: carbon-dots; ciprofloxacin; reactive species; photocatalytic ozonation; 42 

transformation pathway 43 

 44 
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1. Introduction 45 

  Pharmaceuticals and personal care products (PPCPs)ˈas "emerging contaminants", 46 

have received much attention in recent years (Zhang et al., 2018a). The occurrence of 47 

PPCPs was primarily attributed to the abuse in animal husbandry, industrial 48 

wastewater emissions, domestic water discharge, etc. Due to their persistent 49 

physicochemical properties and ineffectiveness to biodegradation, wastewater 50 

treatment plants have not always been efficient in the removal of PPCPs (Verlicchi et 51 

al., 2012). Consequently, multiple PPCPs have been detected in surface water, 52 

groundwater, and potable water. Ciprofloxacin (CIP), for example, a broad spectrum 53 

fluoroquinolone antibacterial agent, is effective in treating various infection(Zhou and 54 

Jiang, 2015). A total amount of 5340 tons of CIP was used in China in 2013, which 55 

was the second highest among all the fluoroquinolone antibiotics prescribed in China 56 

(Zhang et al., 2015). The concentration of CIP has been detected in hospital 57 

wastewater up to 21 µg/L, and in concentration up to several µg/L in secondary 58 

treated effluent due to the incomplete removal of conventional WWTPs (Doorslaer et 59 

al., 2014). Though CIP showed low toxic value on biological samples (Steenbergen et 60 

al., 2017), it is worth noticing that studies indicated that antibiotic resistant bacteria 61 

and resistance genes would be given birth by the effect of CIP at a low level (ng/L) 62 

(Erik et al., 2011; Rodriguez-Mozaz et al., 2015). In this case, genetic variants of 63 

microorganism will be threatened and adverse impact will be imposed on human 64 

health (Kümmerer, 2009; Kenny et al., 2012). In addition, the removal of PPCPs from 65 

wastewater can make a significant contribution to water conservation and 66 
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recirculation, which is achievement of sustainability.  67 

Photocatalysis has been considerably studied in different contaminants treatment 68 

fields(Wen et al., 2016; Ye et al., 2018; Li et al., 2019). Titanium dioxide (TiO2) is one 69 

of the promising photocatalysts which has been extensively investigated due to its 70 

high chemical stability, low cost, environmentally friendliness and optical properties 71 

(Wang et al., 2019). However, several disadvantages of pure TiO2 such as the rapid 72 

recombination of photoexcited electron-holes pairs and exclusively activated with UV 73 

light (λ≤380 nm) might restrain the development of practical application. In this case, 74 

carbon dots (CDs) was considered to modify the photocatalytic performance of TiO2. 75 

CDs possesses remarkable up-converted photoluminescence (PL) behavior, which 76 

indicates CDs could convert lower-energy light (500≤λ≤1000 nm) to high-energy 77 

light (325≤λ≤425 nm). In addition, with advantages of functional surface moieties, 78 

CDs could improve electron transferring and storing capacity. Indicating that CDs 79 

might have the ability to conduct as a promising component in photocatalysts 80 

modification (Fang et al., 2016; Martins et al., 2016). Thus, the composition of CDs 81 

on TiO2 owned the ability to enhance light adsorption efficiency and photocatalytic 82 

performance by broadening the photo-absorption region and decreasing the 83 

recombination of electron-hole pairs(Wang et al., 2017b; Xie et al., 2018; Zhang et al., 84 

2018b). According to our previous work, the synthesized CDs could avoid the 85 

recombination of holes and electrons by transferring the photogenerated electrons 86 

from TiO2, also could produce electrons for the photocatalytic process. Furthermore, 87 

the photogenerated e- was conducive to transfer from the conduction band of TiO2 to 88 
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the interface due to the band gap of TiO2, (3.2 eV) and the lowest unoccupied 89 

molecular orbital energy level of CDs (4.2–4.4 eV) (Chen et al., 2017). 90 

  Ozone, as a selective oxidant (E=2.07 V), has been extensively applied in 91 

wastewater treatment. It is capable for decomposing various recalcitrant organic 92 

pollutants by direct ozonation and indirect use of hydroxyl radicals (•OH, E=2.8 V). 93 

Several studies reported that modifications of ozonation process, such as UV/O3, 94 

H2O2/O3 and peroxymonosulfate/O3, was for the purpose of increasing the oxidizing 95 

capability and decomposition effectiveness of single ozonation (Pocostales et al., 96 

2010; Yang et al., 2015; Lee et al., 2017). However, these processes required the 97 

application of high-energy UV irradiation or consumptions of large amount of 98 

oxidative chemicals. In order to improve the oxidizing ability of ozone and expanse 99 

the light adsorption wavelength, in this work, the photocatalysts TiO2 doped with CDs, 100 

was combined with ozone as a heterogeneous photocatalysis ozonation process. 101 

Accounted for the high efficiency removal of organic pollutants and the prevention of 102 

secondary pollution, heterogeneous photocatalysis ozonation process has been 103 

reported as a promising approach of the removal of recalcitrant organic pollutants 104 

(Ikhlaq et al., 2015; Orge et al., 2015a), but investigations on modified photocatalysts 105 

combining ozone were few. As a modified ozonation process, heterogeneous 106 

photocatalysis ozonation might have significant efficiency on drinking water and 107 

wastewater treatment industries according to the formation of numerous reactive 108 

species in the process and its minimal detrimental effect on water quality (Rey et al., 109 

2014; Quiñones et al., 2015). The superiority of the integrate process was giving rise 110 
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to the highest yield of reactive species such as •OH, O2
•—, h+, etc. Additionally, 111 

heterogeneous photocatalytic ozonation process belongs to a complicated 112 

gas-liquid-solid process which contains numerous reactive species, electron transfer, 113 

surface reaction steps and catalytic photoexcitation process. Hence, massive redox 114 

reactions involved different steps and schematic photocatalytic ozonation mechanism 115 

were proposed in this study. 116 

Among the advanced oxidation processes (AOPs), the combination of photocatalytic 117 

oxidation and ozonation process could lead to higher mineralization and degradation 118 

rate of PPCPs compare with the effect achieved by single process. As a matter of fact, 119 

a synergistic effect has been reported between photocatalysts and ozone due to the 120 

powerful electron trapping ability of ozone, the recombination of electron-hole pairs 121 

was suppress to some extend and resulted in the formation of ozonide ion radical O3
•—, 122 

which eventually transform into •OH (Černigoj et al., 2007). 123 

As photocatalytic activity evaluation of TiO2/CDs under simulated sunlight irradiation 124 

has been previously investigated in our work. For the practical application of 125 

photocatalytic process, the joint use of ozone with photocatalysts would be an 126 

advantage. In this study, TiO2/CDs and ozone was conducted under simulated sunlight 127 

irradiation with the purpose of decomposing CIP. Due to the generation of hydroxyl 128 

radicals (•OH), superoxide ion radical (O2
• — ) and other reactive species, 129 

heterogeneous photocatalysis ozonation process has been demonstrated to be efficient 130 

in organic pollutant decomposition. 131 

 132 
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2. Experimental 133 

2.1 Material 134 

  Ciprofloxacin (CIP, 98%) and commercial TiO2 were purchased from TCI Reagent 135 

Co. Ltd. (China). 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl), tert-Butyl 136 

alcohol and benzoquinone were purchased from Aladdin (China). HPLC-grade 137 

acetonitrile and methanol were obtained from CNW Technologies GmbH (Germany). 138 

Analytical grade citric acid, urea, Na2C2O4, potassium dichromate and sodium azide 139 

were obtained from Taitan (China). Ozone was introduced by an ozone generator 140 

(Quanju Technology, China) fed with pure oxygen (99.5%). Ultrapure water (18.25 141 

MΩ·cm-1) collected from Milli-Q apparatus (Germany) was used in the preparation of 142 

all aqueous solutions during the experiment. All chemical reagents were used as 143 

received without further purification. Secondary wastewater effluent was collected 144 

from Guangzhou wastewater treatment plant (WWTP) and Pearl River water was 145 

collected from Zhujiang (Guangzhou). 146 

 147 

2.2 Preparation of photocatalysts 148 

2.2.1 Preparation of NCDs 149 

  Carbon dots (CDs) were synthesized by hydrothermal method (Qu et al., 2012). In 150 

this study, 3.0g urea and 3.0g citric acid were added with 10mL ultrapure water in a 151 

beaker. The mixture was stirred for 10 min and then transferred into a 100 mL Teflon 152 

autoclave at 180 ◦C for 5 h. After cooling down to room temperature, the collected 153 

solution would be centrifuged at 10000 rpm for 30 min to get rid of large particles. 154 
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The remaining CDs solution was placed at 70 ◦C to receive desiccated CDs powders. 155 

At last, the powders were suspended in ultrapure water to receive 20g·L-1 stock 156 

solution.  157 

 158 

2.2.2 Preparation of TiO2/CDs photocatalysts 159 

  In this study, the TiO2/CDs were synthesized by a facile hydrothermal-calcination 160 

method. A weighed quality (0.5g) of TiO2 was dispersed in 30mL ethanol in an 161 

alumina crucible with continuous magnetic stirring. Afterwards, the calculated quality 162 

of CDs (TiO2/CDs molar ratio of 0, 2.0%, 4.0%, 6.0%, 8.0%) were added into the 163 

TiO2 suspension and vaporized at 75 ◦C. Then, the substance was heated in a muffle 164 

furnace at 300 ◦C for 3h with a heating rate of 5 ◦C·min-1. Finally, the obtained 165 

products were labeled as TiO2, 2.0 wt%, 4.0 wt%, 6.0 wt% and 8.0 wt% of TiO2/CDs, 166 

respectively. 167 

 168 

2.3. Characterization methods 169 

  The crystallinity of the obtained samples was characterized by X-ray diffraction 170 

(XRD Bruker-D8-Advanced X-ray diffractometer) with Cu Kα radiation and scan 171 

area of 2θ from 10° to 80°. The microscopic morphology of the samples were 172 

observed by a transmission electron microscope (TEM, JEM-2100HR) and scanning 173 

electron microscope (SEM, JSM-6700). X-ray photoelectron spectroscopy (XPS) was 174 

applied to analyze the chemical components and ionic characteristics, which equipped 175 

a Thermo VG ESCALAB 250 spectrometer with Al Kα radiation as excitation source. 176 
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The Fourier transform infrared (FT-IR) spectra were recorded by a Nicolet 6700 177 

spectrophotometer (Thermofisher) in the range from 4000 to 400 cm-1. 178 

 179 

2.4 Photocatalysis, ozonation and photocatalytic ozonation experiments 180 

  The efficiency of photocatalytic ozonation were evaluated by the degradation of 181 

CIP. The experiment was conducted in a XPA-7 rotary photochemical reactor with 182 

ozone bubbled at the bottom of the reactor with flow rate of 15 mL·min-1 (Nanjing 183 

Xujiang machine plant). 350 W xenon lamp with 290 nm cut-off filters were utilized 184 

to simulate sunlight source. In a typical process, 50 mg photocatalysts were 185 

introduced into 50 mL of CIP aqueous solution in a 50 mL quartz tube. Before 186 

illumination, the solution was magnetic stirred in the dark for 30 min to ensure the 187 

adsorption/desorption equilibrium for CIP on the photocatalysts. When the xenon 188 

lamp was connected, the ozone bubbled at the bottom of the reactor simultaneously. 189 

At given time intervals, 2.0 mL samples were withdrawn and mixed with 0.5 mL 190 

Na2S2O3 solution to quench residual O3. Prior to HPLC analysis, the samples were 191 

filtered with 0.22 µm Millipore filters to remove particles. Additionally, single 192 

photocatalysis, single ozonation, and photolysis were also conducted under identical 193 

condition. 194 

 195 

2.5 . Analytical methods 196 

The concentration of CIP was determined by high performance liquid 197 

chromatography (HPLC, waters e2695). The concentration of ozone in aqueous 198 
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solution was determined by the indigo method (Bader and Hoigné, 2013). 200 199 

µmol·L-1 NBD-Cl was applied as the fluorescent probe to determine the amount of 200 

O2
•— (Olojo et al., 2005; Ikhlaq et al., 2013). The degradation intermediates yielded 201 

during the photocatalytic ozonation process was identified by the application of 202 

high-resolution accurate-mass spectrometry (HRAM) LC-MS/MS, which included a 203 

Q Exactive Orbitrap mass spectrometer and HPLC system (Ultimate 3000RSLC, 204 

Thermo Scientific, USA). The intermediates was separated by the employment of a 205 

Hypersil GOLD C18 (100 x 2.1 mm, 1.9 µm). 206 

  Linearity of the analysis was constructed with calibration range of 0.02-5.00 µg/ml 207 

(0.02, 0.05, 0.10, 0.50, 2.00, 5.00 µg/ml) for HPLC analysis. The regression 208 

coefficients were ≥0.99 for liner calibration curves. The limits of detection (LOD) and 209 

quantification (LOQ) for CIP was 3.3 ng/ml and 11 ng/ml, which was calculated as 210 

signal-to-noise ratio (S/N)=3:1 and 10:1, respectively. 211 

 212 

3. Results and discussion 213 

The XRD pattern of pure TiO2 and different contents of CDs on TiO2 were 214 

displayed in Fig. S1. The diffraction peaks of the photocatalysts were sharp, 215 

indicating high degree crystallinity was in the sample structures. As observed from 216 

XRD patterns, the rutile form TiO2 (represented by R) had reflections at 2θ=25.3°, 217 

37.9°, 48.0°, 54.2° and 55.2°, which corresponding to (101), (004), (200), (105), (211), 218 

(204) and (220). The result is consistent with anatase crystal phase for TiO2 (JCPDS 219 

PDF#: 00-021-1272). Implying that the CDs doping did not significantly alter the 220 
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crystal structure of TiO2.  221 

In order to confirm the morphologies of the photocatalysts, pristine TiO2 and 6 wt% 222 

TiO2/CDs were characterized by SEM. As depicted in Fig. S2 (a-c), providing 223 

visualization of the structural characteristics of the materials, indicated that the 224 

material had a globular shape (Lu et al., 2018). Additionally, the textural 225 

characterization of pristine was practically the same as the 6 wt% TiO2/CDs. As 226 

confirmed in the TEM images of 6 wt% TiO2/CDs (Fig. S2 d-e), the CDs were well 227 

loaded on the surface of the photocatalysts. The clear lattice fringes of TiO2 (d = 0.35 228 

nm) showed uniformity corresponding to (101) crystal plane of anatase TiO2. (Sajjad 229 

et al., 2009) The selected area electron diffraction (SAED) pattern of 6 wt% 230 

TiO2/CDs showed that the photocatalysts was polycrystalline in nature. 231 

  The surface chemical compositions of prepared 6 wt% TiO2/CDs was determined 232 

by XPS. As depicted in Fig. S3(a), the survey spectrum detected the presence of 233 

titanium (Ti 2p), carbon (C 1s), and oxygen (O 1s) in 6 wt% TiO2/C-Dots, which 234 

suggested that the prepared material was mainly composed of Ti, C and O elements. 235 

In Fig. S3(b), two peaks at 458.2 and 464.1 eV in the Ti 2p spectrum corresponded to 236 

the the Ti2p3/2 and Ti 2p1/2, respectively (Khan et al., 2018). In Fig. 3(c), three peaks 237 

at 284.3, 286.1 and 287.9 eV were observed in high-resolution XPS spectrum of C 1s. 238 

Respectively, the peak at 284.3 eV was attributed to C-C groups; the peak at 286.1 eV 239 

was attributed to C-O groups and the peak 287.9 eV was attributed to C=O groups (Yu 240 

and Kwak, 2012). Three peaks were noticed as the O 1s XPS spectrum showed in Fig. 241 

3(d), the peak at 529.7 eV was assigned to Ti–O; the peak at 530.5 eV was assigned to 242 
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the surface –OH groups and the peak at 532.2 eV was assigned to C=O groups (Liu et 243 

al., 2011; Li et al., 2018). The above results demonstrated the well establishment of 244 

CDs doping on TiO2. 245 

 246 

 247 

3.1 Degradation of CIP 248 

3.1.1 photocatalytic activity 249 

  The efficiency of as-prepare sunlight-driven TiO2/CDs collaborate with ozonation 250 

was evaluated by the degradation of CIP. Pyrex glasses were conducted as wavelength 251 

filters for UVC waveband (200–275 nm) and a part of the UVB waveband (275–290 252 

nm) in the experiment. As Fig. 1(a) displayed, the concentration of CIP barely 253 

changed under single photocatalysis, indicating that CIP was stable to simulated 254 

sunlight irradiation. Similar phenomenon was reported by Wang et al (Wang et al., 255 

2017a). After the introduction of TiO2, slight degradation of CIP was observed. 256 

Observed from the result, the degradation rate was enhanced after CDs doped on TiO2. 257 

For comparison, 64% of CIP was decomposed by pristine TiO2 in 30 min while 91.1% 258 

of degradation rate was achieved by minor introduction of CDs (1.0 wt%). Suggesting 259 

the ratio of TiO2/CDs significantly correlated with the catalytic activity as mentioned 260 

in previous section. An optimum result was achieved by 6 wt% CDs contents on the 261 

TiO2, which was determined to be the optimal concentration of CDs content on TiO2, 262 

further increasing would result in a decrease in the photocatalytic activity for CIP 263 

degradation. 264 
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 265 

Fig. 1 266 

 267 

3.1.2 photocatalytic ozonation experiment 268 

By means of generating hydroxyl radicals (Table S1), solo ozonation itself could 269 

decompose a part of CIP in the given time. But, still, it was not efficient and complete. 270 

Additionally, the joint use of photocatalysts and ozone exhibited strong degradation 271 

efficiency of CIP. As Fig. 1(b) showed, the degradation rate of photocatalytic 272 

ozonation fitted pseudo-first-order kinetic model well. Compare with ozone alone 273 

(k=0.083), the combination of photocatalysts and ozone achieved much higher 274 

degradation rates. Notably, when photocatalysis and ozonation were carried out 275 

simultaneously, 99.7% CIP was decomposed in 16 min by 6 wt% TiO2/CDs and ozone, 276 

which was much higher than the sum of the single performance of 6 wt% TiO2/CDs 277 

and ozone. Additionally, among the above mentioned process, 6 wt% TiO2/CDs 278 

remained the optimal achievement and brought the highest degradation rate of CIP. 279 

For comparison, the optimal degradation rate constant was 0.32, which was about 280 

2.48 times of 6 wt% TiO2/CDs without ozone (k=0.129). 281 

 282 

3.1.3 Influence of different initial pH value 283 

The investigation of pH value is necessary for photocatalytic ozonation as it has 284 

effects on the utilization efficiency of ozone and properties of photocatalysts surface. 285 

As mentioned by Levanov et al.(Levanov et al., 2018), at higher pH, hydroxide (OHˉ) 286 
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could initiate a chain reaction of ozone decomposition and result in higher amount of 287 

•OH. Hence, in single ozone process, higher degradation efficiency would achieve at 288 

alkaline pH. As shown in Fig. 1(c), alkaline pH lead to the higher degradation 289 

efficiency in photocatalytic ozonation process. However, instead of continuously 290 

increasing, the efficiency increment was retarded in higher pH. Since the pKa of CIP 291 

has been reported to be 6.16 and 8.23, also could be negatively and positively charged 292 

under various pH value which was depicted in Fig. S4 (Giri and Golder, 2014). Which 293 

means CIP present in cationic form at pH˘6.16, in zwitterionic form at pH 6.16-8.23 294 

and in anionic form at pH̊ 8.23. During photocatalytic ozonation process, the surface 295 

properties of the photocatalysts could be affected by different pH, resulting from the 296 

proton transference (Chen et al., 2014). The isoelectric point of 6 wt% TiO2/CDs was 297 

approximately 3.3 according to zeta potential report in Fig. S5, indicating the surface 298 

of the photocatalysts has negative charge at pH˚3.3. In this case, repulsive force 299 

occurred between CIP and the photocatalysts while pH˚8.23 and further intensified 300 

as pH increased, resulted in a lower CIP degradation efficiency. Which reached a 301 

balance with continuously generated •OH and explained the phenomenon.  302 

 303 

3.2 Reactive species and mechanism 304 

Previous studies have indicated that multiple reactive species (RSs), like •OH, 305 

O2
•—, h+,  1O2 and e— would generated during the photocatalytic ozonation process 306 

(Nawrocki and Kasprzyk-Hordern, 2010). In order to quantitatively determine the role 307 

of reactive species, quenching experiment was conducted by tert-Butyl alcohol (TBA 308 
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10mM), benzoquinone (BQ 1.0mM), Na2C2O4 10mM, potassium dichromate (K2CrO4 309 

50µM) and sodium azide (NaN3 75mM). As shown in Table S1, under the control 310 

experiment, a photocatalytic ozonation degradation rate constant of 0.326 min-1 was 311 

observed. The introduction of TBA and NaN3 significantly inhibited the degradation 312 

of CIP, leading a degradation rate constant of 0.145 and 0.103 min-1 with a high 313 

inhibition rate of 55.4% and 68.5%. From which we could deduce that the inhibition 314 

rate of 1O2 was 13.1%, indicating 1O2 had a minor effect in the system. It could be 315 

concluded that the decrement of degradation rate constant was attributed to the 316 

trapping of •OH, suggesting •OH could be one of the predominant reactive species of 317 

the photocatalytic ozonation process. Furthermore, the presence of BQ, Na2C2O4 and 318 

K2CrO4 as O2
•—, h+ and e— scavengers, resulting in a degradation rate constant of 319 

0.237, 0.211 and 0.224 min-1, with inhibition rates of 27.2%, 35.2% and 31.3%, 320 

respectively. Implying that O2
•—, h+ e— shared an unneglectable effect in the system. 321 

NBD-Cl was applied as a fluorescent probe to determine the amount of O2
•— in 322 

this study. Several researches reported the intensity of PL in the NBD-Cl products 323 

would be detected at 550 nm (excited at 332 nm) if O2
•— presence in the system and 324 

interacted with NBD-Cl (Olojo et al., 2005; Ikhlaq et al., 2013). As shown in Fig. S6, 325 

three samples were withdrawn under 10 min treatment of photocatalytic ozonation, 326 

sole ozonation and single photocatalysts process, respectively. Fluorescent spectra 327 

showed that photocatalytic ozonation process achieved the greatest amount of O2
•— 328 

production. Indicating the well cooperation between the photocatalysts 6 wt% 329 

TiO2/CDs and ozone. 330 
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A heterogeneous photocatalytic ozonation process involves chemical, catalytic 331 

adsorption and catalytic photoexcitation. The primary reason of CIP decomposition 332 

was the continuous generation of reactive species. In this study, the existence of ozone 333 

would have two major routes to complete the degradation of CIP in the photocatalytic 334 

ozonation process, which includes: (I) direct and indirect ozonation in the bulk. (II) 335 

Interactions on the surface of photocatalysts. 336 

The redox potential of ozone in water is 2.07 eV, which means CIP could be 337 

decomposed by ozone directly in aqueous solution. The relevant equation and 338 

corresponding kinetic constant was exhibited in Table 1, which were proposed 339 

according to the previous scientific literatures. As shown in Eqs. 1-3, pharmaceutical 340 

could be removed by both direct and indirect mechanism where the generation of 341 

hydroxyl radicals by ozone decomposition (Mena et al., 2017). Furthermore, as 342 

illustrated in Eqs. 4-11, on the account of the breaking of aromatic rings and double 343 

carbon bond, hydrogen peroxide was generated, which was not only produced by the 344 

decomposition of ozone, but also the recombination of •O2H radicals (Lovato et al., 345 

2009; Fathinia et al., 2016). As a consequence, the hydrogen peroxide was subjected 346 

to electrons and brought in more hydroxyl radicals (Eqs. 12) (Wang et al., 2018). In 347 

sum, ozonation had the ability to transfer organic pollutants into recalcitrant 348 

intermediates.  349 

 350 

Table 1 351 

 352 
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Under simulated sunlight irradiation, TiO2/CDs was excited and leaded to the 353 

generation of electron-hole pair (Eqs. 13). Eqs. 14-15 showed adsorbed water 354 

molecular was oxidized by photoexcited h+ which gave rise to the generation of •OH. 355 

Due to the lowest unoccupied molecular orbital energy level of C-Dots (4.2-4.4 eV) 356 

(Li et al., 2013) and its ability of electron migration, a mass of electron accumulation 357 

occurred on the surface of the photocatalysis. When ozone was bubbled into the 358 

photocatalytic system in the meantime, it could be adsorbed on the surface of the 359 

photocatalysis where the interactions mainly taken place (Orge et al., 2015b). As 360 

presented in Eqs. 16-17, photoexcited electron was transferred from photocatalysis 361 

surface to ozone and oxygen, therefore O3
•— and O2

•— were yielded, which also 362 

indicated ozone exhibit strong electrophilic property. In our previous work, during the 363 

photocatalytic process (Chen et al., 2017), both e— and O2
•— played negligible roles 364 

for the organic pollutants decomposition. After the introduction of ozone, electron 365 

was able to interact with oxygen molecular and lead to yield O2
•———— (Eqs. 17). 366 

According to the mechanism illustrated in Eqs. 16-20, a synergetic effect between 367 

TiO2/CDs and ozone under simulated sunlight irradiation was proposed. Due to the 368 

electron transferred by electrophilic ozone, the reduction of electron on TiO2/CDs 369 

resulted in the separation of electron-hole pair more effective and leaded to the 370 

continuous generation of h+ under simulated sunlight irradiation. The photocatalytic 371 

ozonation produced reactive species could eventually lead to the completely removal 372 

of organic pollutant (Eqs. 21-23). In conclusion, the joint use of photocatalysis and 373 

ozonation possess could bring much higher •OH yield than the sum of the individual 374 
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process, which accounted for the synergistic effect between ozone and catalysts 375 

continuously separated the electrons and holes. 376 

 377 

Table 2.  378 

 379 

Based on above results and discussion, the probable mechanism for the 380 

photocatalytic ozonation of CIP was proposed schematically in Fig. 2. Under sunlight 381 

irradiation, the light wavelength ̊ 550 nm would be converted into higher-energy 382 

light (wavelength from 325 to 425 nm) on the account of the up-converted 383 

photoluminescence (PL) properties of CDs, which was adsorbed by TiO2 and result in 384 

the generation of electron-hole pair subsequently. Moreover, the photoexcited 385 

electrons in the TiO2 would be transferred and retained in CDs. Consequently, the 386 

electrons on the surface of CDs may interact with ozone and oxygen, leading to the 387 

generation of O3
•— and O2

•—, which react with other reactive species to generate •OH. 388 

Eventually, the presence of reactive species O2
•—, h+, •OH and O3 would lead to the 389 

decomposition of CIP. 390 

The presence of CDs obviously enhances the removal efficiency of CIP, which 391 

attributes to its multiple functions when doped on the TiO2. In conclusion, there 392 

mainly involves three major functions of CDs in this study: (1) Light adsorption 393 

efficiency enhancement (2) Extraordinary electron transfer ability (3) High-capacity 394 

of electron storage.  395 

 396 
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Fig.2 397 

 398 

3.3 Transformation pathways of CIP 399 

HRAM LC-MS/MS was applied to identify the intermediates yielded by the 400 

photocatalytic ozonation of CIP and the possible molecular structure of the 401 

intermediates were proposed according to the analysis of mass spectrum (Fig. S7). 402 

The molecular masses, retention time and structures of twelve identified intermediates 403 

were summarized in Table S2. The transformation pathway of CIP during 404 

photocatalytic ozonation process was deduced schematically in the Fig. 3.  405 

In the pathway I, N (4) in the piperazine ring were attack by •OH and lead to the H 406 

atom on N (4) replaced by hydrogen bond, which indicated compound P1 (348.13417) 407 

should be ascribed as piperazine oxidation. Subsequently, P5 (362.11412) was formed 408 

after the hydroxyl bond was further oxidized into two aldehyde groups on N (1) and N 409 

(4). The cleavage of each CO bond on N (1) and N (4) resulted in the formation of 410 

P8 (334.11957) and P9 (334.12041). Meanwhile, P10 (344.10410) was originated 411 

from the defluorination of P5 (362.11412) The continuous oxidation on bond cleavage 412 

leaded to the molecular weight of intermediate products decreased, the formation of 413 

P12 (263.08253) and P13 (245.11444) demonstrated CIP had been effectively 414 

decomposed in the photocatalytic ozonation process. 415 

 In the pathway II, P2 (348.13506) resulted from the electrophilic adduct reaction 416 

arose on C (15), leading to the addition of hydroxyl radical to the parent molecule. 417 

Further, P6 (288.07837) was formed after P2 (348.13506) underwent quinolonic ring 418 
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oxidation, resulting in the cleavage of hydroxyl bond and decarboxylation (Diao et al., 419 

2016). 420 

 In the pathway III, the reaction was initiated by the attack on F (16), which 421 

underwent a hydroxyl radical substitution, resulting in the formation of P3 (330.12482) 422 

defluorination product. According to our previous work, based on the calculated 423 

frontier electron densities (FEDs) of CIP, compound P5 (362.11412) in pathway I was 424 

attack by O2
•———— and 1O2, meanwhile pathway III was initiated by O2

•———— and •OH. As 425 

FEDs of CIP was calculated to predict the reaction sites (An et al., 2010), which 426 

directly demonstrated the presence of O2
•————, ЬOH, and 1O2 in this study. 427 

 Pathway IV belongs to the degradation at the quinolone moiety. The cleavage of C 428 

(14) and C (15) carbon–carbon double bond adjacent to the carboxylic acid group 429 

gave rise to the formation of ketone product P4 (336.12424). The fractured quinolonic 430 

ring closed up afterwards with the loss of carboxyl, leading to the formation of 431 

diketone P7 (290.26767). Then the N (1) and N (4) atoms underwent the attack by 432 

RSs, resulted in the loss of C2H2 on the piperazine ring and gave rise to P11 433 

(264.08218). Similar reaction pathway was occurred by Dewitte et al (Dewitte et al., 434 

2008), which was triggered by ozone from his perspective. Eventually, CIP and its 435 

oxidized intermediates would be completely decomposed to inorganic matters such as 436 

CO2, NO3
—, F—, H2O in the following prolonged time.  437 

 438 

Fig. 3 439 

 440 
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3.4 Effects of water constituents and matrices 441 

  In order to investigate the photocatalytic ozonation performance in practical 442 

application, influence of commonly existed inorganic anions, cations and humic acid 443 

(HA) were carried out in this study. The impact of inorganic anions (including NO3
ˉ, 444 

NO2
ˉ, CO3

2ˉ, HCO3
ˉ, Clˉ, SO4

2ˉ) were carried out at fixed concentration of 5 mM. 445 

As depicted in Fig. 4(a), except the negligible effect of SO4
2ˉ, all inorganic anions 446 

showed various inhibitory influences on the CIP degradation. The kobs of the control 447 

experiment was 0.32 min-1 ,while the addition of NO3
ˉ,NO2

ˉ,CO3
2ˉ,HCO3

ˉ,Clˉ,SO4
2

448 

ˉ leaded to the reduced kobs of 0.23, 0.05, 0.12, 0.2, 0.29 and 0.31 min-1, respectively. 449 

Nitrite (NO2
ˉ), especially, showed a great inhibitory effect on the photocatalytic 450 

process. In aqueous solution, NO2
ˉ could be oxidized into NO3

ˉ by powerful 451 

oxidant such as ozone and •OH (Schroeder et al., 2011). Afterwards, as an electron 452 

trapper and competing with ozone (Navı́O et al., 1998), NO3
ˉ showed inhibitory 453 

effect as well. Same phenomenon occurred by Yang et al (Yang et al., 2018). As 454 

commonly detected ions in industrial wastewater, NO3
ˉ and NO2

ˉ might show 455 

disadvantages for photocatalytic ozonation process. The presence of HA, CO3
2ˉ and 456 

HCO3
ˉ also showed inhibitory effect on the CIP degradation, which might be 457 

ascribed to their high efficiency of reactive species scavenging (Feng et al., 2017). 458 

Additionally, HA could adsorb a part of sunlight in aqueous solution and resulted in 459 

the detrimental effect of photocatalytic performance. (Zhou et al., 2013) On the other 460 

hand, no obvious effect on the removal of CIP was found in the presence of Clˉ, SO4
2

461 

ˉ. Furthermore, the divalent metal cations, Ca2+ and Mg2+ led to the decline of CIP 462 
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degradation which may attribute to the scavenging of electrons (And and Madras, 463 

2007).  464 

  In order to evaluate the feasibility of the photocatalytic ozonation process under 465 

ambient condition, WWTP water and Pearl River were carried out as solvent of CIP to 466 

compare with ultrapure water. As depicted in Fig. 4(b), though slight inhibitory effects 467 

were shown, the photocatalytic ozonation process still exhibit well performance in 468 

wastewater. The inhibitory effect might attribute to the high TOC value in wastewater, 469 

which would consume the reactive species in the process. In addition, high turbidity 470 

of the wastewater also could affect the degradation efficiency by weakening light 471 

absorption(Wang et al., 2018). In conclusion, photocatalytic ozonation process of 472 

TiO2/CDs under simulated sunlight irradiation could show high efficiency in 473 

wastewater treatment. 474 

Fig. 4 475 

 476 

4. Conclusion 477 

 In this work, we construct a high-efficiency heterogeneous system by 6 wt% 478 

TiO2/CDs and ozone under simulated sunlight irradiation. The performance of 479 

photocatalytic ozonation process was superior to photocatalysis and single ozonation. 480 

Owing to the higher separation efficiency of photogenerated electron-holes and the 481 

richer generation of reactive species, fast removal of CIP was achieved. Mechanism 482 

studies revealed that the present of CDs played a significant role in this process. 483 

Besides the up-converted PL properties of CDs, the ability of electron accumulation 484 
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accelerating the process of electron transferred on ozone and oxygen was not 485 

neglectable. Moreover, the pH investigation deduced that a balance took place 486 

between the repulsive force and larger amount of ЬOH, resulted in limits of 487 

degradation rate constant in further increasing pH. This work is favorable for the 488 

understanding in photocatalytic ozonation reaction mechanism, as well as the 489 

transformation of CIP during the process and the effects of natural water constituents 490 

on the kinetics. 491 
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Table 1. Reactions and kinetic constant of ozone in bulk solution at pH 7 

Reaction No. Reaction Kinetic constant references 

1 �� + ��� → �	
��
����
�� — (Mena et al., 2017) 

2 �� +��� → ���
� + �� 70 M-1s-1 (Mena et al., 2017) 

3 �� +���
� → �� ∙ +��

•� 2.8×106 M-1s-1 (Mena et al., 2017) 

4 �� +�� ∙→ ��� ∙ +�� 2×109 M-1s-1 ( Fathinia et al., 2016) 

5 �� + �� → ��
•� — ( Fathinia et al., 2016) 

6 ��
•� +�� ↔ ��� ∙ 5.0×1010 M-1s-1  k−=7.9×105 M-1s-1 ( Fathinia et al., 2016) 

7 2��� ∙	→ ����+
��� 5.0×109 M-1s-1 ( Fathinia et al., 2016) 

8 �� +���
��
������ — (Lovato et al., 2009) 

9 �� +��
•� → ��

•� + �� 1.6×109 M-1s-1 (Lovato et al., 2009) 

10 ��
•� +�� ↔ ��� ∙ 5.2×1010 M-1s-1  k−=3.7×104 M-1s-1 ( Fathinia et al., 2016) 

11 ��� ∙→ �� ∙ +�� 1.1×105 M-1s-1 ( Fathinia et al., 2016) 

12 ���� + �� → �� ∙ +��� 1.1×1010 M-1s-1 (Wang et al., 2018) 
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Table 2. Reactions involved in photocatalytic ozonation process at pH 7 
Reaction No. Reaction 

13 ����/�!� + ℎ# → ℎ� + �� 

14 ����/�!� − ��� + ℎ� → ����/�!� − �� ∙ 

15 ����/�!� − ��� + ℎ� → ����/�!� − �� ∙ 

16 ����/�!� − �� + �� → ����/�!� − ��
•� 

17 ����/�!� − �� + �� → ����/�!� − ��
•� 

18 ����/�!� − ��
•� + �� → ����/�!� − ��

•� 

19 ����/�!� − ��
•� + �� ↔ ����/�!� − ��� ∙ 

20 ����/�!� − ��� → �� ∙ +�� 

21 ����/�!� − ��� + ℎ� → �	
��
����
�� 

22 ����/�!� − ��� + �� ∙→ �	
��
����
�� 

23 ����/�!� − ��� + ��
•� → �	
��
����
�� 
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(c) 

Fig.1(a) Degradation of CIP under simulated sunlight irradiation process over 
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CDs-TiO2 with different CDs contents  
 (b) Degradation of CIP by photocatalytic ozonation process. 

 (c) Influence of initial pH on the degradation rate of CIP in photocatalytic ozonation 
process by 6 wt% TiO2/CDs 

Reaction conditions: [CIP]0 :10 ppm; catalysts loading : 6 wt% TiO2/CDs 1g/L; ozone 
flow rate:15 mL/min; ozone concentration: 4.7 ppm; initial pH value: 7.0 

 

 

 

Fig.2 Proposed degradation mechanism of CIP by TiO2/CDs and ozone under 
simulated sunlight irradiation 
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Fig.3 Possible transformation pathway of CIP in photocatalytic ozonation process 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

0.0

0.1

0.2

0.3

 

K
o

b
s(

m
in

-
1 )

Mg2+-
HASO2

4
-Cl-HCO3CO2

3
-controlNO3

-NO2 Ca2+-

 

 

 (a)

0 5 10 15 20
-6

-5

-4

-3

-2

-1

0

 Ultrapure water
 WWTP water
 Pearl River

ln
C

/C
0

Time/ min

 

(b) 

Fig.4 (a) Effect of different water constituents (b) effect of different water matrices on 
the degradation rate of CIP by 6 wt% TiO2/CDs in photocatalytic ozonation process 
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•TiO2/CDs exhibited extraordinary properties in photocatalysis and photocatalytic 
ozonation than pristine TiO2. 
•The function of CDs on TiO2 showed well collaborated with ozone under sunlight 
irradiation. 
•The enhanced activity in the process suggested participation of reactive species (•OH, 
O2

•—, h+, etc.). 
•The possible transformation pathway of CIP in photocatalytic ozonation process was 
proposed according to (HRAM) LC-MS/MS. 


