
Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Co-combustion thermal conversion characteristics of textile dyeing sludge
and pomelo peel using TGA and artificial neural networks

Candie Xiea, Jingyong Liua,⁎, Xiaochun Zhanga, Wuming Xiea, Jian Suna, Kenlin Changa,b,
Jiahong Kuoa, Wenhao Xiea, Chao Liua, Shuiyu Suna, Musa Buyukadac, Fatih Evrendilekc

a School of Environmental Science and Engineering, Institute of Environmental-Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006,
China
b Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
c Department of Environmental Engineering, Abant Izzet Baysal University, Bolu 14052, Turkey

H I G H L I G H T S

• Co-combustion of TDS and PP was studied under O2/N2 and O2/CO2 atmospheres.

• Principal component analysis was used to identify the principal reactions.

• The interaction of blends occurred mainly between 490 and 600 °C.

• Bayesian regularized network had a more reliable and robust prediction.

• The lowest activation energy was obtained under 30% O2/70% CO2 atmosphere.
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A B S T R A C T

Co-combustion characteristics of textile dyeing sludge (TDS) and pomelo peel (PP) under O2/N2 and O2/CO2

atmospheres were investigated using a thermogravimetric analysis (TGA) and artificial neural networks. 30%
O2/70% CO2 and air atmospheres led to a similar co-combustion performance. Increases in O2 concentration and
PP significantly improved the oxy-fuel co-combustion performance of TDS. Principal component analysis was
applied to reduce the dimensionality of differential TGA curves and to identify the principal reactions. The
interaction between TDS and PP occurred mainly at 490–600 °C, thus improving the process of residue co-
combustion. Radial basis function was found to have more reliable and robust predictions of TGA under different
O2/CO2 atmospheres than did Bayesian regularized network. Regardless of Flynn-Wall-Ozawa (FWO) and
Kissinger-Akahira-Sunose (KAS) methods used, the lowest mean value of apparent activation energy
(155.4 kJ·mol−1 by FWO and 153.2 kJ·mol−1 by KAS) was obtained under the 30% O2/70% CO2 atmosphere.

1. Introduction

The textile industry constitutes one of the traditional pillar in-
dustries of China and has been rapidly growing for the recent decades.
In parallel have come the increased discharge amount and rate of highly
polluted wastewater and sludge threatening the public and environ-
mental health [1,2]. Currently, textile dyeing industries in China gen-
erate wastewater and sludge at annual rates of about 2.1 billion tons (t)
and 21 million t, respectively [3]. Textile dyeing sludge (TDS) has a
complex composition of dyes, auxiliaries, perishable organics, patho-
gens, surfactant, heavy metals, and persistent biodegradation products
such as polycyclic aromatic hydrocarbons [4]. Its traditional disposals

in landfills and soils are not considered socially and environmentally
acceptable [5]. Instead, co-combustion of TDS appears to be an alter-
native and efficient way of disposal owing to reduction of fuel costs,
wastes, and risks of environmental pollution, and stabilization of
combustion [6–8].

Co-combustion of TDS with biomass has been reported to offset the
shortcomings of mono-combustion [9,10]. For example, Cai et al. [11]
found that the addition of eucalyptus residues to paper mill sludge
improved the mono-combustion characteristics. Zhang et al. [12] re-
ported that adding rice straw to sewage sludge significantly reduced the
release of volatiles during their co-pyrolysis process. Peng et al. [7]
pointed out that the interaction between microalgae and TDS exerted a
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positive char catalytic effect on the decomposition of TDS residue at
530–800 °C.

With the reduction of fossil fuel reserves, the significance of biofuels
has grown as a clean, sustainable and renewable energy source. Co-
combustion of biomass accounts for over 97% of bioenergy production
globally and in China [13]. In particular, citrus peels as a byproduct in
vast amounts are produced after industrial processing of an annual
global production of citrus fruits of over 115 million t [14]. For ex-
ample, pomelo as one of citrus fruits has an annual production of over 2
million t [15], and a large amount of pomelo peels (PP) are dumped
into landfills in China. Therefore, PP presents unexplored potential for
co-combustion process and energy utilization.

Given the urgent need to reduce CO2 emissions from fossil fuel
combustion, the development of oxy-fuel (O2/CO2) co-combustion
technology towards carbon capture and storage has been extensively
promoted recently [16–18]. Higher CO2 removal and capture was re-
ported to come from flue gases generated by oxy-fuel co-combustion
(∼95%) than by the conventional air co-combustion (∼15%), which in
turn lower costs associated with CO2 sequestration [19,20]. The re-
placement of N2 by CO2 adversely affects heat transfer rate, gas tem-
perature, and burning stability during the co-combustion process [21].
These negative effects can be mitigated by increased O2 concentrations
during the oxy-fuel co-combustion process [22].

Overall, a better understanding of oxy-fuel combustion calls for
experimentally monitoring and modeling of time-series data from a
wide range of interacting variables. Machine learning techniques such
as artificial neural networks (ANN) have been widely accepted to tackle
such complex issues owing to their strong ability of mapping non-linear
behaviors [23]. It is possible to estimate oxy-fuel combustion properties
based on a minimal set of uniform experimental data. There exist many
ANN architectures [24,25] such as Levenberg-Marquardt network
(LMN), Bayesian regularized network (BRN) and radial basis function
(RBF). LMN was successfully used to predict thermogravimetric ana-
lysis (TGA) and differential thermogravimetric (DTG) curves at dif-
ferent heating rates during the co-combustion process [26,27]. How-
ever, there have been a few studies adopting BRN and RBF to predict
co-combustion properties.

The objectives of the present study were to (1) characterize the co-
combustion process of TDS and PP using TGA under the six atmo-
spheres: air (O2/N2), 20% O2/80% CO2, 30% O2/70% CO2, 50% O2/
50% CO2, 70% O2/30% CO2, and O2, (2) evaluate it using characteristic
co-combustion and interaction indices, (3) predict the thermal beha-
viors of oxy-fuel co-combustion reactions using BRN and RBF, (4)
quantify the co-combustion kinetics using the Flynn-Wall-Ozawa (FWO)
and Kissinger-Akahira-Sunose (KAS) methods, and (5) perform di-
mensionality reduction and clustering of DTG data using principal
component analysis (PCA). Thus, the co-combustion characteristics of
TDS and PP under O2/N2 and O2/CO2 atmospheres were studied for the
first time, as an effective way to improve the mono-combustion per-
formance of TDS. PCA was firstly used to identify the principal reac-
tions during the oxy-fuel co-combustion process. RBF and BRN applied
to predict TGA curves during the oxy-fuel co-combustion process con-
stituted another novelty of this study.

2. Methods

2.1. Sample preparation

TDS and PP samples were taken from a textile printing and dyeing
plant located in Dongguan and a fruit market of Guangzhou University
Mega Center, Guangzhou, China, respectively. The TDS and PP samples
were firstly dried in the oven at 105 °C for 24 h to remove moisture.
Then, these samples were milled and sieved separately to 200 mesh
(74 μm) particle size. TDS blends with 10%, 20%, 30% and 40% (wt%)
PP were prepared and coded as TP91, TP82, TP73 and TP64, respec-
tively. The ultimate and proximate analyses were presented in Table 1.

2.2. Thermogravimetric analysis

A TG analyzer (NETZSCH STA 409 PC Luxx, Germany) was used in
thermogravimetric experiments. In TG, each sample (10 ± 0.5mg)
were heated from room temperature to 1000 °C using the heating rates
of 10, 20 and 30 °C·min−1. The carrier gases were air, O2/CO2 and O2

atmospheres respectively, at a total gas flow rate of 50mL·min−1. All
the experiments were conducted three times in one testing condition for
acceptable repeatability, and the relative errors under identical condi-
tions were within±2%.

2.3. Combustion parameters

Combustion performance was evaluated using parameters obtained
from TGA-DTG curves. The TGA-DTG tangent method was used to de-
termine ignition temperature (Ti) [30]. Burnout temperature (Tf) was
defined as the temperature at which 98% conversion is achieved at the
end of the reaction [20]. Comprehensive combustion index (CCI) was
used to evaluate combustion property [31]. A higher CCI value means a
better combustion property. Combustion stability index (Rw) was used
to reflect combustion stability [32]. A higher Rw value indicates better
combustion stability.
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where Rp and Rv are maximum and average mass loss rates, respec-
tively. Tm is the peak temperature.

2.4. Interaction indices (MR-RMS)

Interactions between TDS and PP during the co-combustion were
analyzed using theoretical DTG curves (DTGtheo) as was presented in Eq.
(3) [30]:

= +xDTG ·DTG x ·DTGtheo TDS TDS PP PP (3)

where xTDS and xPP refer to TDS and PP mass fractions, while DTGTDS

and DTGPP represent DTG curves of the pure TDS and PP, respectively.
To evaluate the interactions between each blend, the MR and RMS

indices were adopted [33] and defined using Eqs. (4) and (5).
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where x i
exp and xtheo

i refer to experimental and theoretical values, re-
spectively; and n refer to the sum of experimental points. A positive MR
value means a synergetic behavior, while RMS value determines the
intensity of the interaction.

2.5. Predictive modeling

Back-propagation (BP) and RBF networks are both the common
techniques of feed-forward ANN modeling. The feed-forward ANN ar-
chitecture for supervised learning applications consists of three layers:
input, hidden and output. In the designed networks, mixing ratio,
heating rates, combustion atmosphere and temperature were selected
as the inputs, while the mass loss percent was selected as the output. To
test prediction accuracy and robustness of both ANN models, the TGA
data sets were divided into training (95%) and testing (validation)
subsets (5%). Due to the small portion of the data, the leave-one-out
cross-validation (LOOCV) technique was used in model selection and
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parameter optimization.

2.5.1. RBF
Radial Basis Function is composed of an input layer, a hidden radial

basis layer of nodes with Gaussian function, and an output linear layer.
In theory, RBF is able to smoothly approximate any nonlinear function
if the amounts of nodes in the hidden layer are enough. The newrb
function of MATLAB was called to create a three-layer RBF as follows:

=Net newrb (P,T,GOAL,SPREAD,MN,DF) (6)

where P is the input vector; T is the output vector; GOAL is the mean
square error; SPREAD is the distribution density of radial basis func-
tions; MN is the maximum number of neurons; DF is the number of
neurons added between two iterations.

Training of RBF created by using newrb function is a process by
which the iteration was designed by increasing the number of hidden
neurons constantly, which continued until the error achieved the target,
or the number of neurons reached the upper limit. The training para-
meters of RBF were presented in Table 2.

2.5.2. BRN
BRN, one of the typical back-propagation (BP) ANNs, is based on

Bayesian regularization algorithm that greatly improves the general-
ization ability by modifying the objective function of ANNs. The mean
sum of squares of the network errors (MSE) is the usual choice for the
objective function. Therefore, the regularized objective function, the
mean square error of regularization (msereg), is given thus [34]:

= +msereg α MSE β MSW( ) ( ) (7)
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while α and β are regularization parameters;y and ̂y are the actual and
calculated outputs, respectively; N is the total number of parameters in
the network; MSW is the sum of squared network weights, and w is the
network weight.

The weights and biases in the networks were further optimized by
using this objective function that is conductive to overcoming the
overfitting problem and improving the generalizing performance of
ANNs. Bayesian regularized network was trained using ‘trainbr’ func-
tion in MATLAB 2012a. The training parameters of BRN were presented
in Table 2.

2.5.3. Performance indices
To evaluate performance of both ANN models, root mean square

error (RMSE), mean absolute error (MAE), and coefficient of determi-
nation (R2) were calculated using Eqs. (10)–(12):
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where yi is the actual value from experimental sample, ̂yi is the corre-
sponding predicted value, y is the mean of all values from experimental
data sets, and N is the number of test data points. Smaller RMSE and
MAE values and high R2 value indicate better model performance.

2.6. Kinetic theory

The kinetics for the overall reaction rate in gas-solid reaction can be
generally written as follows:

=dα
dt

k P T f α( , ) ( )O2 (13)

where k is the apparent combustion reaction rate, which includes the
effect of temperature (T) and the effect of the reactive oxygen partial
pressure (PO2), and where α is the conversion degree of solid reactant; f
(α) is the reaction model. Assuming that the partial pressure related to
the oxygen partial pressure remains constant during the process, the
apparent combustion reaction rate will be dependent on the tempera-
ture [21,35], thus:
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where k(T) is the constant of reaction rate; A is the apparent pre-ex-
ponential factor (min−1); Ea is activation energy (kJ·mol−1); R is the

Table 1
The ultimate and proximate analyses of TDS and PP on an air-dried basis.

Sample Ultimate analyses (wt%) Proximate analyses (wt%) Qnet,d
b

(MJ·kg−1)
C H Oa N S Mc Vd Ae FCf

TDS 20.20 6.08 20.00 3.22 2.76 11.70 44.71 36.04 7.55 9.87
PP 42.40 6.31 35.06 0.59 0.01 13.57 68.04 2.06 16.33 16.82

a O, calculated by O=100%–C–H–N–S–M–A [28,29].
b Qnet, d, lower heating value on dry basis.
c M, moisture.
d V, volatile matters.
e A, ash.
f FC, fixed carbon.

Table 2
Training parameters selection for RBF and BRN.

Model Training parameters

RBF Training function = ‘newrb’
Spread of the radial basis function= 3.5
Maximum number of neuros= 3800
Maximum epochs= 50
Training goal= 0.006

BRN Training function = ‘trainbr’
Number of neurons in hidden layer=16
Maximum epochs= 500
Maximum validation failures= 50
Learning rate= 0.005
Training goal= 0.0005
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gas constant (8.314 J·mol−1·K−1); T is the absolute temperature (K); t is
the reaction time (min); and β is the heating rate (°C·min−1).

α was defined as follow:
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where m0, mt and mf are initial weight, weight at time t and final
weight, respectively.

The integrated form of Eq. (14) can be expressed as:
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where x= Ea/RT, and p(x) is the temperature integral without an exact
analytical solution.

The FWO and KAS methods were used to estimate the activation
energy for non-isothermal thermal experiments. The FWO method is
based on the following equation [36]:
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where Ea values were estimated from the slope of a plot of log β versus
1/T (−0.4567 Ea/R).

The KAS method was derived from the Coats-Redfern approxima-
tion of p(x)= x−2e−x as follows [9]:
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where Ea values were calculated from plotting ln(β/T2) versus 1/T.

2.7. Principal component analysis

Due to the large amount of experimental data from the DTG curves
obtained, PCA using a factor analysis function of SPSS 19.0 software
was employed to identify the main reactions. In PCA, the DTG data of
the samples (TDS, TP91, TP82, TP73, TP64 and PP) were used as the
input variables. After the variables were standardized using the de-
scriptive function, the factor extraction and the orthogonal rotation
with Kaiser Normalization method was conducted. Our results were
presented in the score plots.

3. Result and discussion

3.1. Co-combustion characteristics under six atmospheres

According to previous studies about the interactions during the co-
combustion under the air atmosphere, more promoting effects occurred
with TP73 which was further used to discuss the effect of the changing
co-combustion atmosphere. In the six atmospheres, the TGA and DTG
curves obtained for TP73 at 20 °C·min−1 were shown in Fig. 1, while
the co-combustion characteristic parameters of TP73 were presented in
Table 3.

The TGA and DTG curves under the O2/CO2 and O2 atmospheres
were similar below 230 °C (Fig. 1), and an exception occurred under the
20% O2/80% CO2 atmosphere. All the DTG curves between 150 °C and
230 °C almost superposed with each other which corresponded to the
drying and release of light volatiles from the sample. The different at-
mospheres had no significant effect on this stage of the thermal de-
composition of TP73 where temperature rather than atmosphere was
the main driving force [37]. In the temperature range of 230–600 °C,
the TGA and DTG curves shifted to the lower temperature gradually
with the increased O2 content. The main decomposition process focused
on 200–600 °C, taking up at least 81% of the total conversion in either
atmosphere. Four weight loss peaks occurred clearly in this stage. For

example, under the 30% O2/70% CO2 atmosphere, the weight loss
peaks were centered at 229.4 °C, 315.1 °C and 524.6 °C, while a rela-
tively small one was centered at 438.9 °C. The first three peaks were
attributed to the release of volatiles and the decomposition of macro-
molecule organic matters, while the last one stemmed mainly from char
combustion. The weight loss rate reached its maximum at the second
peak, which became sharper with the increased O2 concentration. A
higher O2 concentration increased the mass flux rate of O2 to the par-
ticle surface, thus promoting the fiercer release of the volatiles [38].
This provided extra heat feedback to the particle, enhancing devolati-
lization and combustion [39]. In contrast, the last weight loss peak

Fig. 1. (a) TGA and (b) DTG curves of TP73 co-combustion at 20 °C·min−1 under six
atmospheres.

Table 3
Characteristic parameters for TP73 at 20 °C·min−1 under six atmospheres.

Atmospheres Tia Tfb Tmc Rp
d Mf

e CCIf Rw
g

(°C) (°C) (°C) (%·min−1) (%) (10−7) (108)

Air 202.5 846.2 315.6 5.92 29.89 2.608 0.0080
20% O2/80% CO2 201.9 845.0 317.9 5.88 30.29 2.599 0.0079
30% O2/70% CO2 200.8 862.8 315.1 6.05 30.65 2.632 0.0082
50% O2/50% CO2 199.5 857.8 308.3 6.92 31.07 3.049 0.0097
70% O2/30% CO2 198.3 860.2 304.8 7.21 30.50 3.241 0.0102
O2 196.8 854.2 296.3 8.45 30.39 3.902 0.0124

a Ti, ignition temperature.
b Tf, burnout temperature.
c Tm, peak temperature.
d Rp, maximum mass loss rate.
e Mf, residual mass.
f CCI, comprehensive combustion index expressed in%2⋅°C−3⋅min−2.
g Rw, combustion stability index.
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became smaller with the increased O2 concentration. This result re-
vealed that the other operating conditions such as fuel type were most
likely to play more important roles in the last peak value.

Several co-combustion characteristics were determined (Table 2) to
validate the effects of O2 concentration on the co-combustion perfor-
mance. As expected, as O2 concentration increased from 20% to 100%
under the O2/CO2 conditions, ignition (Ti) and peak temperatures (Tm)
decreased by 5.1 °C and 21.6 °C, respectively. At the same time, the
maximum mass loss rate (Rp) increased from 5.88%·min−1 to
8.45%·min−1. Comprehensive combustion index rose by 50.13%, while
combustion stability index (Rw) was enhanced by 56.96%. The com-
bustion performance under the O2/CO2 atmosphere was significantly
improved with the increased O2 concentration. Ti value barely changed
regardless of the O2/CO2 conditions which may be attributed to the
oxidation of TP73 before ignition in a kinetic controlled region. This
conclusion was also supported by the results obtained for coals by Wang
et al. [35]. However, the residual mass (Mf) was not correlated with the
O2 concentrations. Similar observations were reported by Huang et al.
[31].

The TGA and DTG curve for the co-combustion of TP73 was also
presented under air (Fig. 1) relative to the O2/CO2 conditions. Weight
loss of TP73 in air was similar to that of TP73 in 30% O2/70% CO2, in
particular, in the temperature range of 200–500 °C. However, when the
temperature rose above 600 °C, the beginning of weight loss in air was
earlier than in 30% O2/70% CO2 corresponding to the appearance or-
ders of the weight loss peak. The higher specific heat and density of CO2

and lower diffusivity of O2 in CO2 than N2 weakened the transport of O2

to the particle surface [40,41]. This resulted in the reduced combustion
rate under oxy-fuel conditions, as reported elsewhere [35]. As shown in
Table 3, the values of Tm, Rp, Rw and CCI obtained from these atmo-
spheres were in the following order: 20% O2/80% CO2< air< 30%
O2/70% CO2< 50% O2/50% CO2< 70% O2/30% CO2<O2, as were
discussion above. Moreover, the higher O2 fractions were needed in
oxy-fuel co-combustion than in air to achieve better co-combustion
performance [42]. The Mf value (30.65%) was higher in 30% O2/70%
CO2 than air (29.89%) which was consistent with the results obtained
for pulverized coal combustion by Li et al. [43]. This case was attrib-
uted to the lower flame propagation speed and stability in O2/CO2 than
air, which led to a higher unburned carbon content [41].

3.2. Co-combustion characteristics under O2/CO2 atmosphere

The co-combustion under the 30% O2/70% CO2 atmosphere was
discussed in this section as it is analogous to the real oxy-fuel co-
combustion condition, relative to the 20% O2/80% CO2. Fig. 2 showed
TGA and DTG curves of the individual fuels and their blends under the
30% O2/70% CO2 atmosphere. Table 4 showed the characteristic
parameters obtained from the co-combustion under the 30% O2/70%
CO2 atmosphere.

Principal component analysis was applied to reduce the di-
mensionality of DTG curves and to identify the principal reactions [44].
The first principal component (PC1) and the second principal compo-
nent (PC2) were extracted when rotation was converged in three
iterations later. PC1 and PC2 accounted for 70.8% and 27.5% of the
total variance, respectively, which contributed 98.3% of the sums of
squared loadings (meeting the typical threshold of 80%). The score plot
(Fig. 2c) showed that the samples belonged to the two separated
groups. All the blends and TDS belonged to the same group, thus in-
dicating that TDS had a more complex composition than did PP in af-
fecting the thermal properties. The principal reactions occurred in the
combustion process were identified in Fig. 2d, which provided the in-
dication of thermodynamic pattern for PC1 and PC2. The component
matrix revealed that TDS was closely related to PC1, and PP was mostly
related to PC2. As shown in Fig. 2d, the weight loss peaks of PC1 were
indicated to contribute to each stage, whereas PC2 played a major role
in the stages 1 and 3. Therefore, the main co-combustion process was

divided into the four stages. The stages 1 (200–325 °C) and 2
(325–428 °C) were related to the release of different organic volatiles
from PP and TDS. The stage 3 (428–496 °C) corresponded to the com-
bustion of the fixed carbon from PP and difficultly decomposed vola-
tiles from TDS. The stage 4 (496–600 °C) was mainly contributed to by
the combustion of the fixed carbon from TDS.

As shown in Fig. 2(a), the curves of the blends fell between those of
the pure TDS and PP sequentially, and the weight loss for all mainly
occurred between 200 °C and 600 °C. More intense releases of volatiles
appeared to occur from the combustion of pure PP than pure TDS,
mainly due to larger amounts of hemicellulose, cellulose and other
combustible components, higher organic matter content, and lower ash
content of PP. Therefore, an earlier weight loss was observed for the TP
blends than pure TDS, and their curves gradually shifted from that of
TDS to PP. Similar results were also reported in the related literature of
co-pyrolysis petrochemical wastewater sludge with lignite [45]. The
amount of volatiles release from the blends increased with the in-
creased proportion of PP in the blends from 10% to 40%, leading to the
decrease in Ti (204.1–199.3 °C) (Table 4). The impact of the blending
with PP on the residual mass was apparent under the 30% O2/70% CO2

atmosphere, showing a 12.18% decrease with the increased PP ratio
(10–40%).

As can be seen from Fig. 2(b), the DTG curves of the blends had
several weight loss peaks and varied depending on the PP blending
ratio. With the rising proportion of PP, the characteristic DTG peaks
increased. This may be attributed to the decomposition of low-mole-
cular-weight volatiles in PP [46]. For example, Rp value of the blends
increased from 4.34%·min−1 to 7.12%·min−1 with the increased PP
(10–40%) (Table 4). At the same time, Ti decreased from 204.1 °C to
199.3 °C, indicating an improved ignition performance and oxy-fuel co-
combustion. More significantly, the Tf value decreased by 36 °C, which
may result from the fact that the caking process between TDS particles
was prevented by the blending of PP [47]. According to Table 4, with
the increased PP proportion, Tm decreased from 323.5 °C to 313.3 °C.
CCI and Rw increased by 1.16 times and 75%, respectively. Tm is con-
sidered to be inversely correlated with the reactivity of the fuels [48],
which indicates that the reactively of TDS was promoted with the ad-
dition of PP. In conclusion, the blending of PP with TDS significantly
improved the co-combustion performance under the 30% O2/70% CO2

atmosphere.
With the increased PP proportion, the DTG peaks shifted to a lower

temperature range, as discussed above. This reflected interactions
during the co-combustion under the 30% O2/70% CO2 atmosphere.
Similar results were reported by Liao and Ma [49]. The experimental
and theoretical co-combustion DTG curves were plotted under the 30%
O2/70% CO2 atmosphere at 20 °C·min−1 with the four PP ratios in
Fig. 3. As shown in Fig. 3(a)–(d), the theoretical DTG curves matched
well with the experimental DTG curves in the temperature ranges of
30–200 °C and 600–1000 °C, while the significant deviations appeared
in the temperature range of 200–600 °C. This suggested that interac-
tions existed between the two components during the co-combustion,
which was more pronounced with the higher PP proportion.

Fig. 4 showed the interaction indices of RMS and MR in the different
stages under the 30% O2/70% CO2 atmosphere at 20 °C·min−1. As was
shown in Fig. 4(a), the RMS values were greater in the reaction stage 4
(496–600 °C) than in the other stages for all the samples. This case
confirmed that the interaction between TDS and PP became more sig-
nificant at high temperature. As was shown in Fig. 4(b), the MR values
were slightly< 0 in the stage 1 for all the samples, indicating that the
co-combustion was inhibited slightly in this stage. In particular, the MR
values in the stage 3 tended to be<0, revealing that the inhibition
slightly increased in this stage with the increased PP percentage. On the
contrary, the MR values in the stage 4 were significantly> 0, indicating
that this stage was beneficial during the co-combustion process. This
might be attributed to the char formed during the PP combustion,
which in turn acted as a catalyst during the decomposition of TDS
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residue. The PP combustion in this stage also released more heat to
facilitate the endothermic reaction. As a result, the combustion of TDS
residue was improved. Similar results were presented in related lit-
erature about the co-combustion between microalgae and TDS [7].

3.3. ANN models for co-combustion under O2/CO2 atmospheres

In the training process of RBF, the iterations continued until the
number of hidden neurons reached 3800, the upper limit. Thus, the
three-layer RBF with 4 input neurons, 3800 hidden neurons and one
output neuron were formed. As for BRN, the trial and error method was
employed to determine the optimum number of hidden neurons, which
led to 16. Hence, the best BRN topology (4×16×1) was finalized,

with the parameters (w1, w2, b1, b2) presented in Table 5.
In this study, after the performances of both ANN models were

compared, the better one was adopted for further predictions. The cross
plots of predictions by both models versus the corresponding experi-
mental values during the co-combustion process of TP73 at 20 °C·min−1

under the 30% O2/70% CO2 atmosphere were shown in Fig. 5. A tighter
cloud of points fell along the 45° line showed that BRN had a more
reliable prediction than did RBF. As shown in Table 6, the three per-
formance indices (RMSE, MAE, and R2) based on both models were
compared for the co-combustion of TP73 under the different O2/CO2

atmospheres at 20 °C·min−1. The RMSE and MAE values of BRN were
lower than those of RBF, while the R2 values showed the opposite.
Fig. 6(a) illustrates the predicted TGA curves of BRN coincided with the
experimental ones under the different O2/CO2 atmospheres. BRN pro-
vided a more robust prediction than did RBF in predicting the co-
combustion properties. The predicted TGA curves based on BRN pro-
vided more groups of the O2/CO2 co-combustion atmospheres for TP73
(Fig. 6(b)), a similar trend with the increased O2 concentration as dis-
cussed above.

3.4. Kinetic analysis

To evaluate the effect of the co-combustion atmosphere on the ki-
netics, the FWO and KAS methods were adopted to understand the oxy-
fuel co-combustion process at the heating rates of 10, 20, and
30 °C·min−1. The activation energy Ea values and the corresponding R2

values from the FWO and KAS methods were summarized in Table 7 for
a series of conversions (0.2≤ α≤ 0.8) for TP73 under the different
atmospheres. Each deviation value of Ea obtained from the FWO and
KAS methods was within 5%, reflecting their similar trends. Our results
had high R2 values in the range of 0.9514–1 (Table 7).

Fig. 2. (a) TGA and (b) DTG curves at 20 °C·min−1 under 30% O2/70% CO2 atmosphere. (c) Score plot resulting from PCA; and (d) factor scores of PC1 and PC2.

Table 4
Characteristic parameters at 20 °C·min−1 under 30% O2/70% CO2 atmosphere.

Samples Tia Tfb Tmc Rp
d Mf

e CCIf Rw
g

(°C) (°C) (°C) (%·min−1) (%) (10−7) (10 8)

PP 196.0 481.4 294.4 30.28 3.57 36.003 0.0451
TDS 247.2 903.6 325.7 3.63 42.04 0.830 0.0039
TP91 204.1 889.8 323.5 4.34 38.49 1.565 0.0056
TP82 202.2 873.4 318.2 5.34 33.95 2.148 0.0071
TP73 200.8 862.8 315.1 6.05 30.65 2.632 0.0082
TP64 199.3 853.8 313.3 7.12 26.31 3.377 0.0098

a Ti, ignition temperature.
b Tf, burnout temperature.
c Tm, peak temperature.
d Rp, maximum mass loss rate.
e Mf, residual mass.
f CCI, comprehensive combustion index expressed in%2·°C−3·min−2.
g Rw, combustion stability index.
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In the co-combustion process of TP73, the conversion degree range
of 0.2–0.6 and beyond 0.6 represented the oxidative pyrolysis of vola-
tiles and char combustion, respectively [50]. Ea varied with the O2/CO2

atmospheres, showing an initial increasing trend in the conversion
range of 0.2–0.5 and a subsequent decreasing trend. In particular, the
significant difference among Ea values under the O2/CO2 atmospheres
occurred in the conversion range of 0.4–0.6, which was related mainly
to the maximum mass loss peak during the co-combustion process.
Taking the FWO method as an example (Table 7), the average Ea values
of these atmospheres were in the following order: 30% O2/70% CO2

(155.4 kJ·mol−1) < air (160.5 kJ·mol−1) < 50% O2/50% CO2

(167.7 kJ·mol−1) < 20% O2/80% CO2 (177.8 kJ·mol−1) < 70% O2/

30% CO2 (205.4 kJ·mol−1) < O2 (205.8 kJ·mol−1). Under the O2/CO2

atmosphere, Ea did not increase monotonically with the increased O2

concentration. This finding was in good agreement with previous stu-
dies reported by Huang et al. [31]. The activation energy was affected
by the change in the activated molecules concentration, diffusion and
organic impurities during the co-combustion process [41]. When the O2

concentration increased from 20% to 30%, the average Ea decreased. It
was attributed to the enhanced diffusion in this stage as the O2 con-
centration increased. In this stage, the higher the O2 concentration was,
the easier the proceeding of reaction was. However, the increased O2

concentration did not always lower the activation energy and impel the
proceeding of reaction. When the O2 concentration increased from 30%

Fig. 3. The experimental and theoretical DTG curves for (a) TP91, (b) TP82, (c) TP73, and (d) TP64 at 20 °C·min−1 under the 30% O2/70% CO2 atmosphere.

Fig. 4. The interaction indices of (a) RMS and (b) MR at 20 °C·min−1 under the 30% O2/70% CO2 atmosphere.
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to 70%, heat release from semi-coke oxidization increased, and thus,
the surface temperature of semi-coke increased [41]. Meanwhile, the
semi-coke structure expanded the grain size and the ash content in-
creased with the increased final temperature [37]. Therefore, the

average Ea increased with increased O2 concentration in this stage. As
the O2 concentration increased from 70% to 100%, the change in
average Ea was minor. This was due to very little char remained at high
oxygen concentrations and combustion was not a major event [37]. The
lower the activation energy was, the easier the reaction was. Hence,
merely increasing the oxygen concentration was not necessarily favor-
able for the co-combustion of TP73.

4. Conclusions

(1) The co-combustion performance under the O2/CO2 atmosphere was
significantly improved with the increased O2 concentration. As the
O2 concentration increased, Ti and Tm decreased, whereas Rp, CCI
and Rw increased. The 30% O2/70% CO2 atmosphere achieved a

Table 5
Weights and biases of the best BRN topology (4×16×1).

w1 b1 w2 b2

5.4633 −11.3760 0.0706 8.2626 −7.8266 −2.1891 −9.6542
−4.0699 −3.5824 −8.6011 −4.1898 10.4975 −0.0504
−1.5114 −6.5060 0.0325 4.6018 −4.3953 5.1212
−4.9149 −0.1269 −0.0974 −0.1190 −0.1392 0.2799
−0.5510 −0.4063 −0.0469 −8.9347 −3.1932 7.0265
−0.5417 −0.5820 −0.7024 −7.6787 −3.1617 −8.3479
0.5619 0.6141 0.7500 2.4398 1.0931 −7.1838
−1.1783 2.8944 0.0455 −0.1017 0.2377 3.7535
−9.8309 −2.8539 −0.1682 0.6489 −2.8560 −0.1632
0.5818 −0.9959 −0.0262 2.1794 0.4345 5.8329
5.1881 0.8584 0.0989 0.0594 1.8939 −0.5710
1.4002 0.3363 −0.0193 −0.0059 1.2167 −13.6087
0.4883 −3.3664 0.0659 3.8957 −4.3977 −8.7909
−0.6462 −1.8458 −2.6837 −0.3361 0.9305 0.0575
−4.2955 −8.9969 −0.0595 5.9071 −6.9313 −3.2779
0.8914 0.3823 −0.0241 −0.0008 0.6953 18.3265

Fig. 5. Comparison of (a) RBF- and (b) BRN-predicted data versus experimental data
during the co-combustion process of TP73 at 20 °C·min−1 under the 30% O2/70% CO2

atmosphere.

Table 6
Comparison of performance indices for RBF and BRN for the co-combustion process of
TP73 at 20 °C·min−1 under the O2/CO2 atmosphere.

Atmosphere RMSE MAE R2

RBF BRN RBFN BRN RBF BRN

20% O2/80% CO2 0.8989 0.4957 2.2467 1.2996 0.9988 0.9996
30% O2/70% CO2 0.8506 0.3277 2.4981 0.9200 0.9989 0.9998
50% O2/50% CO2 1.0778 0.3254 2.5779 1.2946 0.9982 0.9998
70% O2/30% CO2 1.1066 0.3585 2.5137 1.1615 0.9981 0.9998
O2 1.3329 0.4082 3.6004 1.5812 0.9973 0.9997

Fig. 6. TGA curves of TP73 co-combustion at 20 °C·min−1 under the O2/CO2 atmo-
spheres: (a) comparison of BRN-predicted data versus experimental data; (b) BRN-pre-
dicted data.
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combustion performance analogous to air.
(2) The blending of PP with TDS significantly improved the oxy-fuel co-

combustion performance. The main co-combustion process was
divided into the four stages based on PCA. The interaction of the
blends occurred mainly between 490 and 600 °C where the mono-
combustion of TDS residue was improved. The fierce interactions
existed in the fourth stage based on RMS, while the accelerative
effect existed in the fourth stage and the slight inhibition existed in
the second and third stages based on MR.

(3) RBF and BRN were developed to predict TGA data under the dif-
ferent O2/CO2 atmospheres. The best three-layer topology was
obtained to be 4×3800×1 and 4× 16×1 for RBF and BRN,
respectively. BRN model had a more reliable and robust prediction
than did RBF. BRN was applied to predict the co-combustion pro-
cess under the O2/CO2 atmospheres.

(4) The oxy-fuel combustion kinetic analysis of TP73 was performed
using the FWO and KAS methods. The lowest average Ea value

(155.4 kJ·mol−1 by FWO and 153.2 kJ·mol−1by KAS) occurred
under the 30% O2/70% CO2 atmosphere.

(5) Our quantification and characterization results help to adopt ap-
propriate co-combustion atmospheres and blending ratios to obtain
accurate co-combustion kinetics when TDS is used in industry. The
introduction and application of BRN paves the way for the mod-
eling of TDS-related thermal process, even the determination of
optimum operating conditions.
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Table 7
Kinetic parameter estimates from FWO and KAS for TP73 under the different atmospheres.

Atmospheres α FWO method KAS method

Fitting equation Ea(kJ·mol−1) R2 Fitting equation Ea(kJ·mol−1) R2

Air 0.2 y=−9040.7x+ 18.915 164.6 1.0000 y=−19795x+ 29.08 164.6 1.0000
0.3 y=−10280x+19.787 187.1 0.9999 y=−22562x+ 30.926 187.6 0.9999
0.4 y=−9875.8x+ 18.107 179.8 0.9985 y=−21569x+ 26.949 179.3 0.9983
0.5 y=−9576.1x+ 16.84 174.3 0.9965 y=−20822x+ 23.936 173.1 0.9960
0.6 y=−8042.7x+ 13.46 146.4 0.9985 y=−17203x+ 16.013 143.0 0.9982
0.7 y=−7295.4x+ 11.522 132.8 0.9997 y=−15380x+ 11.401 127.9 0.9997
0.8 y=−7591.4x+ 11.122 138.2 1.0000 y=−15945x+ 10.323 132.6 1.0000
Average 160.5 158.3

20% O2/80% CO2 0.2 y=−9972.2x+ 20.467 181.5 0.9827 y=−21926x+ 32.628 182.3 0.9811
0.3 y=−10735x+20.421 195.4 0.9901 y=−23600x+ 32.369 196.2 0.9892
0.4 y=−10691x+19.39 194.6 0.9959 y=−23441x+ 29.893 194.9 0.9955
0.5 y=−10976x+18.993 199.8 0.9993 y=−24039x+ 28.88 199.9 0.9992
0.6 y=−9088.7x+ 14.923 165.5 0.9990 y=−19599x+ 19.364 162.9 0.9989
0.7 y=−8108.9x+ 12.574 147.6 0.9995 y=−17241x+ 13.807 143.3 0.9994
0.8 y=−8811.2x+ 12.62 160.4 0.9990 y=−18740x+ 13.756 155.8 0.9987
Average 177.8 176.5

30% O2/70% CO2 0.2 y=−8029.1x+ 16.872 146.2 0.9967 y=−17462x+ 24.37 145.2 0.9964
0.3 y=−9136.1x+ 17.733 166.3 0.9968 y=−19930x+ 26.199 165.7 0.9964
0.4 y=−9610.8x+ 17.736 175.0 0.9901 y=−20966x+ 26.107 174.3 0.9891
0.5 y=−9834.2x+ 17.377 179.0 0.9828 y=−21428x+ 25.191 178.2 0.9809
0.6 y=−8281.8x+ 13.93 150.8 0.9872 y=−17767x+ 17.117 147.7 0.9853
0.7 y=−7483.6x+ 11.885 136.2 0.9939 y=−15829x+ 12.259 131.6 0.9929
0.8 y=−7417.9x+ 10.998 134.6 0.9928 y=−15564x+ 10.06 129.4 0.9915
Average 155.4 153.2

50% O2/50% CO2 0.2 y=−8557.1x+ 17.943 155.8 0.9979 y=−18679x+ 26.837 155.3 0.9976
0.3 y=−9668x+ 18.808 176.0 0.9995 y=−21161x+ 28.687 175.9 0.9994
0.4 y=−11143x+20.58 202.9 0.9995 y=−24506x+ 32.677 203.7 0.9995
0.5 y=−11736x+20.799 213.6 0.9997 y=−25825x+ 33.1 214.7 0.9997
0.6 y=−8623.9x+ 14.705 157.0 0.9994 y=−18577x+ 18.935 154.4 0.9993
0.7 y=−7474x+ 12.076 136.1 0.9989 y=−15830x+ 12.733 131.6 0.9986
0.8 y=−7298.9x+ 11.043 132.9 0.9983 y=−15317x+ 10.201 127.3 0.9979
Average 167.7 166.2

70% O2/30% CO2 0.2 y=−12036x+24.839 219.1 0.9708 y=−26693x+ 42.722 221.9 0.9686
0.3 y=−12290x+23.68 223.7 0.9855 y=−27203x+ 39.913 226.2 0.9843
0.4 y=−12960x+23.857 235.9 0.9964 y=−28695x+ 40.231 238.6 0.9961
0.5 y=−14700x+25.903 267.6 0.9958 y=−32655x+ 44.862 271.5 0.9954
0.6 y=−10591x+17.911 192.8 0.9863 y=−23115x+ 26.332 192.2 0.9847
0.7 y=−8492.7x+ 13.65 154.6 0.9795 y=−18184x+ 16.369 151.2 0.9762
0.8 y=−7915.4x+ 11.958 144.1 0.9589 y=−16744x+ 12.32 139.2 0.9514
Average 205.4 205.8

O2 0.2 y=−8833.3x+ 18.508 160.8 0.9878 y=−19316x+ 28.139 160.6 0.9865
0.3 y=−10612x+20.697 193.2 0.9981 y=−23345x+ 33.053 194.1 0.9979
0.4 y=−14488x+26.783 263.7 0.9999 y=−32227x+ 46.989 267.9 0.9999
0.5 y=−18098x+32.005 329.5 1.0000 y=−40497x+ 58.941 336.7 1.0000
0.6 y=−10354x+17.763 188.5 0.9995 y=−22587x+ 26.02 187.8 0.9994
0.7 y=−8498.5x+ 13.846 154.7 0.9999 y=−18221x+ 16.856 151.5 0.9999
0.8 y=−8235x+ 12.566 149.9 0.9976 y=−17508x+ 13.756 140.7 0.9971
Average 205.8 205.6
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