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A B S T R A C T

(Co-)combustion characteristics of sewage sludge (SS), coffee grounds (CG) and their blends were quantified
under increased O2/CO2 atmosphere (21, 30, 40 and 60%) using a thermogravimetric analysis. Observed per-
centages of CG mass loss and its maximum were higher than those of SS. Under the same atmospheric O2

concentration, both higher ignition and lower burnout temperatures occurred with the increased CG content.
Results showed that ignition temperature and comprehensive combustion index for the blend of 60%SS-40%CG
increased, whereas burnout temperature and co-combustion time decreased with the increased O2 concentration.
Artificial neural network was applied to predict mass loss percent as a function of gas mixing ratio, heating rate,
and temperature, with a good agreement between the experimental and ANN-predicted values. Activation en-
ergy in response to the increased O2 concentration was found to increase from 218.91 to 347.32 kJ·mol−1 and
from 218.34 to 340.08 kJ·mol−1 according to the Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa methods,
respectively.

1. Introduction

Rapid growth rates of urbanization and population have increased
the generation of sewage sludge (SS) to such an extent that its treatment
has become an important issue across the world (Cieślik et al., 2015;
Huang et al., 2018). Since SS contains large amounts of salts, nutrients,
heavy metals, pathogens, and organic pollutants, public and environ-
mental health is under significant threat unless it is treated properly
(Nadziakiewicz and Koziol, 2003; Kijo-Kleczkowska et al., 2016).
Compared to such methods as landfilling, composting, and agricultural
recycling, the use of renewable energy sources in co-combustion has
received widespread attention as it alleviates the environmental issues
associated with SS disposal and allows for its efficient use for energy
production (Magdziarz and Wilk, 2013). Therefore, co-combustion of
SS with different biomass types has been a preferred method to increase
the share of renewable solid fuels in the energy market (Niu et al.,
2016; Liu et al., 2017). Coffee prepared from roasted coffee beans is a

globally popular drink with a global annual production of about
500 billion cups (Li et al., 2014). Coffee grounds (CG) as by-products
are generated in vast quantities during the processing of raw coffee
powder with hot water or steam for instant coffee preparation
(Mussatto et al., 2011a). CG residues are rich in sugars (45.3%w/w)
polymerized into cellulose and hemicellulose structures, protein
(13.6%w/w) and ashes with such minerals as potassium, phosphorus,
magnesium, and calcium (Mussatto et al., 2011b).

In response to the increased atmospheric emissions of greenhouse
gases, O2/CO2 combustion appears to be a promising technology for
capturing CO2 (Wang et al., 2012a; Haykiri-Acma et al., 2010; Arias
et al., 2008). Through O2/CO2 combustion, nitrogen is removed, with
fuel burning in the mixture of pure O2 and recycled flue gases. Most
studies about the coal and biomass co-firing have been performed under
air atmosphere (Roni et al., 2017; Sahu et al., 2014; Saidur et al., 2011).
Also, analyses of the oxy-fuel combustion have mainly focused on pure
coal or pure biomass (Scheffknecht et al., 2011; Toftegaard et al.,
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2010). However, there exists a lack of studies about the co-combustion
characteristics of the SS and CG blends under increased O2/CO2 con-
ditions towards the practical application of such solid fuels. For a better
understanding of operating conditions of an efficient industrial system
suitable for blending solid fuels such as CG under the changing O2/CO2

combustion, it is necessary to simulate thermal behavior based on the
application of data-driven models. Among several modeling approaches
are the artificial neural networks (ANNs) widely used to forecast the
non-linear relationships between input-output data (Mohanraj et al.,
2015; Yadav and Chandel, 2014; Witek-Krowiak et al., 2014). Since the
application of ANNs still remains scarce to predict co-combustion be-
haviors of SS-CG blends under different O2 concentrations, this study
also attempts to explore the use potential of ANN in this field.

The main objectives of the present study were to (1) quantify im-
pacts of the increased O2 concentration on the (co-)combustion char-
acteristics of SS, CG and their blends using a thermogravimetric ana-
lysis, (2) simulate yield as a function of gas mixing ratio, temperature,
and heating rate using ANN and (3) estimate the kinetics of the SS-CG
blends under different conditions according to the Kissinger-Akahira-
Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods.

2. Materials and methods

2.1. Proximate and ultimate analyses

SS samples were supplied from an urban wastewater treatment plant
located in Guangzhou, China. CG samples were obtained from an in-
stant coffee processing factory in China. Both materials were pulverized
using a pestle and mortar after being air-dried and then passed through
a sieve with a mesh size of 74 μm using a screen vibrator. The samples
were dried in an oven at 105 °C for 24 h and stored in a desiccator. The
proximate analyses of SS and CG were conducted in accordance with
the Chinese National Standard GB/T 212-2008. The ultimate analysis
(C, H, N, and S) was performed using an element analyzer (Vario EL
cube, Germany), and then, O content was calculated by difference. The
proximate and ultimate analyses and higher heating values (HHV) of
the SS and CG samples were summarized in Table 1 (Chen et al., 2017).

2.2. Thermogravimetric analyses

SS and CG blends were prepared using the following six ratios:
100%SS, 90%SS+10%CG, 80%SS+ 20%CG, 70%SS+ 30%CG, 60%
SS+40%CG, and 100%CG. The (co-)combustion behaviors of the in-
dividual and blended samples were analyzed using a thermogravimetric
analyzer (TGA) (Mettler Toledo TGA/DSC 1 analyzer). (Co-)combustion
was performed under the four atmospheres of 21%O2/79%CO2, 30%
O2/70%CO2, 40%O2/60%CO2, and 60%O2/40%CO2 in the temperature
range of 30–1000 °C at the four heating rates of 5, 10, 20 and
40 °C·min−1. The flow rate was kept constant at 100mL·min−1 in all
experiments, and the initial weight of each sample for TGA was about
10mg.

2.3. Artificial neural network

Artificial neural network is a data-driven modeling tool to predict
complex and non-linear relationships between inputs and output
(Sunphorka et al., 2017a). By processing information through a com-
plex network with sensory feedbacks, ANN learns and adjusts itself until
it fits the solution (Sunphorka et al., 2017b). Feedforward Multiple
Layer Perceptron (MLP) based on Levenberg-Marquardt (LM) back-
propagation, an intermediate optimization algorithm between the
Gauss-Newton and gradient descent methods (Fausett, 1994), was used
to train ANN. MLP network has an input layer, followed by one or more
neurons (nodes) with their biases (b), a weight matrix (w), and an
output vector (Vani et al., 2015). Hidden layers are employed to im-
plement complex and non-linear functions on ANN (Jorjani et al.,
2008). In the present study, the three neurons of O2-CO2 mixing ratios,
heating rates, and temperature were used in the input layer. The
numbers of hidden layers and neurons in the hidden layers, training
epochs, and activation functions were chosen using a trial and error
approach. Model performance was evaluated considering the root mean
square error (RMSE) in Eq. (1), mean absolute error (MAE) in Eq. (2),
mean bias error (MBE) in Eq. (3) and coefficient of determination (R2)
in Eq. (4) between predicted and experimental TG values. Lower RMSE,
MAE and MBE values and higher R2 values indicate more optimized
ANN architecture. The ANN model was developed using the ANN
toolbox in Matlab.
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where Hiis the target value, Hi model, is the network output of each pat-
tern, and Hi is the mean of target values.

2.4. Kinetic methods

Kinetic behavior of the thermal decomposition processes of the
different constituents was expressed using the following rate of con-
version:

=dα
dt

k T f α( ) ( ) (5)

Table 1
Proximate and ultimate analyses of SS and CG on an air-dried basis.

Sample Ultimate analysis (wt%) Atomic ratio Proximate analysis (wt%) HHVa (MJ·kg−1)

C H Of N S H/C O/C Mb Vc Ad FCef

SS 24.13 3.94 66.69 4.50 0.74 0.163 2.764 5.50 48.80 43.38 2.32 10.67
CG 57.17 7.10 33.36 2.31 0.06 0.124 0.584 2.69 74.82 0.56 21.93 24.81

a HHV, higher heating value on an air-dried basis.
b M, moisture.
c V, volatile matters.
d A, ash.
e FC, fixed carbon.
f O and FC, calculated by difference.
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where t (min) is time; T is the absolute temperature; f(α) represents the
function of reaction mechanism; and α is the degree of conversion that
can be calculated thus:

= −
−

α W W
W W

i

f

0

0 (6)

where W0, Wi and Wf refer to initial, instantaneous and final masses,
respectively. k(T) is a temperature-dependent rate constant and is ex-
pressed by the Arrhenius law as follows:
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⎝

− ⎞
⎠

k T A E
RT
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where A is the pre-exponential factor; Eα (J·mol−1) is activation energy
of the reaction; and R is the universal gas constant, 8.314 J·mol−1·K−1.
Substituting Eq. (7) in Eq. (5) leads to the following:
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Taking into account that the temperature is a function of time and
increases with the constant heating rate β (K·s−1), β can be re-written
thus:

= =β dT
dt

dT
dα

dα
dt (9)

Eqs. (8) and (9) can be combined and rearranged as follows:
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where g(α) is the integrated form of conversion-dependent function f
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a on the right-hand side of Eq. (10) is called the

temperature integral, which does not have an analytical solution.
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substituting the values of temperature integral (P(x)) in Eq. (10) gives:
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As the value of Ea/R is constant, the evaluation of ∫
α

dα
f α

0
( ) is depen-

dent on evaluating the function P(x). In this study, the iso-conversional
model based on the KAS and FWO methods was used for approximation
and applied to calculate activation energy (Eα). The KAS method
(Kissinger, 1957; Akahira and Sunose, 1971) based on the Coats and
Redfern (1964) approximation is expressed thus:
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where the plot of ln(β/T2) against 1/T resulted in a straight line whose
slope can be used to determine Eα.

Doyle (1962) evaluated P(x) and suggested its value to be
= − −P x xlog( ( )) 2.315 0.4567 over the range of ⩽ ⩽x20 60. Using the

Doyle (1962) approximation and the logarithmic form of Eq. (10); the
following linear equation of the FWO method (Ozawa, 1965; Flynn and
Wall, 1966) is obtained:
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Upon changing logarithm to the base 10 (log) to natural logarithm
(ln), Eq. (13) can be rewritten thus:
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where Eα for different conversion values can be calculated from the

slope of lnβ versus 1/T.

3. Results and discussion

3.1. Proximate and ultimate analyses

The SS and CG samples differ in their composition as can be seen in
Table 1. SS had a complex mixture of undigested organics such as plant
residues, papers, inorganic materials, oil and fecal materials (Tyagi and
Lo, 2013). CG biomass had high carbon content and may be used as a
potential source to produce solid fuel. The molar H/C ratio as a para-
meter for aromaticity and carbonization degree was higher for SS than
for CG (Yuan et al., 2013). At the same, the molar O/C ratio was higher
for SS than for CG which meant that SS had higher hydrophilicity with
more polar-groups than CG did (Chen et al., 2014).

Lower N and S contents of CG can reduce NOx and SOx emissions
from pure SS combustion. Furthermore, CG contained higher volatile
matter and HHV than did SS. The ash contents of SS and CG were
43.38% and 0.56%, respectively. Thus, blending CG with SS can be
beneficial for reduction in the waste of the combustion process.

3.2. Influence of SS and CG blends on co-combustion under increased O2/
CO2 atmosphere

Fig. 1 shows the comparison of mass loss percentages of pure SS and
CG fuels and their blends under the increased atmospheric O2 con-
centrations from 21%O2/79%CO2 to 30%O2/70%CO2. The TG curves
are given in Fig. 1a, while the DTG profiles are shown in Fig. 1b. The

Fig. 1. The remaining mass percentages of SS, CG and their blends under the increased
O2/CO2 atmospheres at a heating rate of 20 °C·min−1: (a) TG and (b) DTG.
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pure CG showed higher mass loss than did the pure SS in both en-
vironments. The two SS curves under the aforementioned conditions
nearly overlapped. The maximum mass loss rate of SS was slightly
higher under 30%O2/70%CO2 than 21%O2/79%CO2, with a slightly
shorter burning time. As for CG, the DTG profile shifted to a lower
temperature region with a remarkable higher peak value under 30%O2/
70%CO2 than 21%O2/79%CO2. This can be attributed to the fact that
rising O2/CO2 ratio enhances O2mass flux to the volatiles flame, thus
increasing devolatization rate. CG decomposition occurred under 30%
O2/70%CO2 separately at ∼297 and 460 °C, respectively—a shoulder
∼425 °C attached to the left of the second decomposition. Peak tem-
perature (Tm) was found to be 306.9 °C which was also similar for the
different blends. All the curves of the blends lied in between those of
the pure samples. With the increased CG content of the blends, the mass
loss percentage and maximum mass loss rate became higher. This in-
crease in the blend also decreased the fuel burnout temperature. The
variation with the increased O2 content was 1.1 °C in the ignition
temperature (Ti) but 31.4 °C in burnout temperature (Table 2). Ti was
controlled by the ejection of volatile matter from CG rather than by the
O2 concentration, whereas Tb was determined by the chemical oxida-
tion of char (Ahn et al., 2014). The burnout time decreased was at-
tributed to the volatile content of blends increases as the CG increases,
and the heat released was increasing during the combustion (Table 1)
(Wang et al., 2012b). Comprehensive combustion characteristic index
(S) reflects the burning performance of the fuels defined as follows (Yu
et al., 2008):

=S dW dt dW dt
T T

( / ) ( / )
i b

max mean
2 (15)

where (dW/dt)max refers to maximum mass loss rate; (dW/dt)mean is
average mass loss rate; Ti is ignition temperature; and Tb is burnout
temperature. The higher the S value is, the more vigorously the samples
are burned and quicker the char is burned out. As can be seen in
Table 2, under the mixed O2/CO2 environment, when the O2 con-
centration increased from 21% to 30%, the index S of CG increased
from 11.331× 10−11 to 19.150× 10−11 min−2·°C−3. The increased
CG ratio caused the index S to increase. When the CG fraction of the
blend was more than 30%, the value of index S was greater than in air
(Chen et al., 2017). These suggest that after CO2 replaces N2, the de-
crease in the combustion performance of the SS-CG blend can be offset
by the increased O2 concentration and CG content (Wang et al., 2017).

3.3. Influence of increased O2/CO2 atmosphere on co-combustion

Fig. 2 shows the TG-DTG profiles of the 60%SS-40%CG blend under
the increased O2 concentrations. With the increased atmospheric O2

volume from 21 to 60%, the overall co-combustion trend for the 60%
SS-40%CG blend was consistent, and the TG-DTG profiles shifted to a

low temperature zone. When the O2 concentration was above 60%, the
TG curve decreased sharply, with the blend approaching its maximum
weight loss rate immediately as indicated by the red circle in Fig. 2.
According to the TG and DTG profiles given in Fig. 2, after the moisture
release, the co-combustion process can be divided into the two stages.
The first one occurred in the range of 185–370 °C where the 60%SS-
40%CG blend burnt vigorously, and mass loss decreased significantly,
with a large amount of volatile devolatilization. The second stage,
mainly the char burnout stage, was in the range of 395–600 °C where
the mass loss rate was relatively slow. With the increased O2 con-
centration, the maximum mass loss (DTGmax) rate increased. As can be

Table 2
(Co-)combustion characteristic parameters of SS, CG and their blends under increased O2/CO2 atmosphere.

Samples Tia(°C) Tbb(°C) Tmc(°C) DTGmax
d(%/min) Mf

e(%) Sf(10−11) Burnout time

100%SS(CO279%-O221%) 240.0 646.8 297.5 3.84 49.65 1.082 30.58
100%CG(CO279%-O221%) 280.9 511.9 306.9 22.20 0.95 11.331 23.84
100%SS(CO270%-O230%) 238.0 643.6 294.9 3.93 49.74 1.127 30.42
90%SS10%CG(CO270%-O230%) 249.2 631.1 306.9 5.22 44.72 1.534 29.79
80%SS20%CG(CO270%-O230%) 261.5 608.3 306.9 7.07 39.70 2.134 28.65
70%SS30%CG(CO270%-O230%) 264.6 591.7 306.3 9.20 35.06 2.995 27.82
60%SS40%CG(CO270%-O230%) 272.8 577.1 305.9 11.86 30.14 4.005 27.09
100%CG(CO270%-O230%) 282.0 480.5 296.7 35.56 1.13 19.150 22.27

a Ti, ignition temperature.
b Tb, burnout temperature.
c Tm, peak temperature.
d DTGmax, maximum mass loss rate.
e Mf, residual mass.
f S, comprehensive combustion index in min−2·°C−3.

Fig. 2. The remaining mass percentages of the 60%SS-40%CG blend against T under the
increased O2/CO2 atmospheres at the heating rate of 20 °C·min−1: (a) TG and (b) DTG.
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seen in Table 2, when the O2 concentration increased to 60%, the
DTGmax was 50.54 %/min. This result shows that when high con-
centration of O2 was supplied, the organic substance of 60%SS-40%CG
blend was combusted immediately, and a sharp loss of its mass was
observed in the O2/CO2 mixtures (Irfan et al., 2012). Tm showed a
decreasing trend as the O2 mole fraction increased from 21 to 60%.
When the O2 volume fraction was below 40%, Ti of the blend slightly
changed, whereas when O2 increased to 60%, Ti increased to 286.2 °C.
Instead, Tb of the blend showed an obvious decreasing trend. With the
increased O2 concentration to 60%, the blend Tb dropped to 553.3 °C,
and the burnout time was shortened. The higher the O2 concentration
was, the higher the S index was (Table 3). When the O2 concentration
increased from 21 to 60%, the S index increased by 4.49 times. In fact,
under O2-enriched char-combustion conditions, CO oxidation in the
boundary layers of char particles and the char gasification by CO2 play
an important role (Yu et al., 2013; Zeng and Fu, 1996), and the char
particles burn under increased kinetic control despite the higher
burning rates (Irfan et al., 2011).

At the heating rate of 20 °C·min−1, the T/α (conversion rate) re-
lationship plot of the blend under the increased O2 concentrations is
shown in Fig. 3. With the increased O2 concentration and temperature,
α increased, while the corresponding temperature at the same α de-
creased. When the O2 concentration was 21% and α reached 50%, the
temperature was 351.3 °C. When the O2 concentration increased to 40%
and α remained the same, the corresponding temperature was 329.5 °C.

Fitting ignition time (τi) and burnout time (τb) led to the following
equation y= ea+bx+cx2 (Fig. 4a and c). The fitting coefficients of τi and
τb were 0.9904 and 0.9439, respectively. The first differential curves of
τi and τb represented the change tendency of the blend τi and τb. The
second differential curves of τi and τb reflected the change tendency of
increasing τi rate and decreasing τb rate, respectively. With the

increased O2 concentration, τi of the blend increased gradually
(Fig. 4a and b). The two inflexion points that appeared on the second
differential curve of τi were where the O2 concentration reached 21 and
60%. The first inflexion point being less than the second one suggests
that the change in the increasing tendency of τi was not obvious below
40% O2 concentration but became apparent when the O2 concentration
reached 40%. Unlike τi, τb of the blend showed a decreasing trend with
the increased O2 concentration. The first inflexion point was higher
than the second one in Fig. 4d. The rate of decline in the blend τb de-
creased gradually and flattened when the O2 concentration was 40%.

3.4. ANNs of co-combustion of SS-CG blends

75% and 25% of the entire experimental data were used for training
and testing, respectively. The performance metrics of the ANN topolo-
gies with the different numbers of hidden layers and neurons trained
with LM are presented in Table 4. The total training epochs (iterations)
were set to 1000, with the performance goal of 10−5. A hyperbolic
tangent sigmoid function (tansig) and linear transfer function (purelin)
were selected for the hidden and output layers, respectively. The ar-
chitecture of ANN 18 with the three inputs, two hidden layers with 3
and 20 neurons in the first and second ones, respectively, and an output
layer (mass loss percent) is shown in Fig. 5. The output was used to
predict TG curves under the increased O2/CO2 atmospheres. ANN 18
provided the best predictive power with the highest R2 value of 99.98%
and the lowest RMSE and MAE values of 0.381 and 0.285, respectively
(Table 4). The ANN 18 performed excellently to simulate the mass loss
with the TG curves for the remaining gas mixing ratios (Fig. S1) and
resulted in a close agreement between the experimental and predicted
values (Fig. 6).

3.5. Evaluation of kinetic parameters

According to Eqs. (11) and (12), the Eα values for several α values
can be determined from the slope of a straight line obtained from a plot
of ln(β/T2), lnβ against 1/T. The four different heating rates of 5, 10, 20
and 40 °C·min−1 were used to calculate Eα using the KAS and FWO
methods. The activation energies for 0.1≤ α≤ 0.9 and the corre-
sponding R2 values under the increased O2/CO2 atmospheres are shown
in Table 5. All the R2 values were above 0.94, and the Eα values of each
α obtained by the KAS and FWO methods varied slightly (Table 5).

Since the average Eα values estimated by the KAS and FWO models
were in good agreement, the average value of the two models was taken
as Eα value of the 60%SS-40%CG blend. The blend Eα values were es-
timated at 218.62, 236.15, 323.74 and 343.70 kJ·mol−1 for the O2

concentration of 21, 30, 40 and 60%, respectively. Eα increased with the
increased O2 concentration at the second stage of combustion. The
activation energy depends on the activated molecule concentration,
diffusion limitation, and organic impurities during the co-combustion
process of solid samples (Fang et al., 2006). With the increased O2

concentration, heat release from char oxidization increased, thus

Table 3
Combustion characteristic parameters of the 60%SS-40%CG blend (SC64) under increased O2/CO2 atmospheres.

Samples Tia(°C) Tbb(°C) Tmc(°C) DTGmax
d(%/min) Mf

e(%) Sf(10−11) Burnout time

SC64(CO279%-O221%) 272.7 584.7 308.5 −10.71 30.14 3.581 27.47
SC64(CO270%-O230%) 272.8 577.1 305.9 −11.86 30.14 4.005 27.09
SC64(CO260%-O240%) 273.8 562.9 302.5 −14.99 29.93 5.215 26.38
SC64(CO240%-O260%) 287.0 553.3 295.7 −50.54 30.29 16.073 25.90

a Ti, ignition temperature.
b Tb, burnout temperature.
c Tm, peak temperature.
d DTGmax, maximum mass loss rate.
e Mf, residual mass.
f S, comprehensive combustion index in min−2·°C−3.

Fig. 3. Relationship between T and α under increased O2/CO2 atmospheres for the 60%
SS-40%CG blend.
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increasing the surface temperature of char. In addition, char structure
expanded particle size and increased ash content with the increased
final temperature (Werther and Ogada, 1999). The increase in Eα with
the increased O2 concentration was also reported by Wang et al.

The curve-fitting of Eα varied in response to the increased O2 con-
centration (Fig. S2a). The calculated values agreed well with the dose-
response model. The slope (RE) of the curve-fitting (Fig. S2b) was
0.55427 at the 21% O2 concentration and increased sharply up to
9.23068 at the 35% O2 concentration. However, when the O2 con-
centration was above 35%, RE decreased sharply down to 1.80324 at
the 45% O2 concentration. When the O2 concentration was above 45%,
the RE curve flattened and became 0.44731 and 0.0241 under the 50%
and 60% O2 concentrations, respectively.

4. Conclusions

During the O2/CO2 combustion processes, as the O2 concentration
increased, burnout temperature and combustion time of the blend
tended to decrease, while ignition temperature, maximum mass loss
rate and comprehensive combustion index increased. ANN model of
mass loss percent as a function of O2-CO2 mixing ratio, heating rate, and
temperature showed very close agreement with experimental TGA va-
lues, with R2 and RMSE values of 99.98% and 0.381, respectively. The
average activation energy values of the blend were estimated at 218.62,
236.15, 323.74 and 343.70 kJ·mol−1 under the increased O2 con-
centrations, respectively.

Fig. 4. Curve-fitting for (a) ignition time and (c) burnout time, and curve-fitting of differentiation processing for (b) ignition time and (d) burnout time.

Table 4
Performance comparisons of 27 ANNs.

Model Inputs Network
topology

RMSE MBE MAE R2

ANN1 Oxygen-carbon
dioxide ratio,
heating rate,
temperature

3*1 0.794 0.132 0.574 0.9991
ANN2 5*1 2.432 0.142 1.717 0.9917
ANN3 7*1 1.046 0.187 0.750 0.9986
ANN4 10*1 1.195 0.461 0.866 0.9983
ANN5 13*1 1.395 −0.200 0.991 0.9973
ANN6 15*1 3.375 1.290 2.662 0.9863
ANN7 17*1 1.469 0.445 1.182 0.9972
ANN8 19*1 3.663 1.589 2.955 0.9843
ANN9 20*1 14.353 −4.896 11.154 0.7428
ANN10 3*3*1 0.468 0.132 0.346 0.9997
ANN11 3*5*1 0.493 0.221 0.392 0.9997
ANN12 3*7*1 1.696 0.616 1.106 0.9964
ANN13 3*10*1 0.560 0.169 0.412 0.9996
ANN14 3*13*1 1.337 0.378 0.740 0.9976
ANN15 3*15*1 0.607 0.271 0.460 0.9996
ANN16 3*17*1 1.905 0.603 0.758 0.9962
ANN17 3*19*1 4.006 −1.808 2.221 0.9815
ANN18 3*20*1 0.381 0.110 0.285 0.9998
ANN19 5*3*1 0.970 0.057 0.663 0.9986
ANN20 5*5*1 0.716 0.380 0.510 0.9995
ANN21 5*7*1 1.652 0.592 0.700 0.9966
ANN22 5*10*1 5.099 1.709 3.473 0.9709
ANN23 5*13*1 4.443 1.850 2.157 0.9766
ANN24 5*15*1 8.161 −2.695 4.426 0.9296
ANN25 5*17*1 1.260 −0.077 0.828 0.9977
ANN26 5*19*1 2.974 −0.535 1.757 0.9897
ANN27 5*20*1 2.379 0.582 1.287 0.9926
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Fig. 5. Proposed ANN structure used to predict co-combustion behaviors of SS-CG blends under increased O2/CO2 atmospheres.

Fig. 6. Performance comparisons of ANN 18 tested for 40%O2-60%CO2 mixing ratio at different heating rates.
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