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� First study on the co-combustion process of sewage sludge-coffee grounds mixtures using ANN.
� The ANN model predicted TG curves for co-combustion of mixtures with high accuracy.
� Interaction occurred and, in general, affected the decomposition in a positive manner.
� Activation energies were calculated using the KAS and OFW methods.
� The average activation energy was lowest when the mixture contained 40% coffee grounds.
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a b s t r a c t

Artificial neural network (ANN) modeling was applied to thermal data obtained by non-isothermal ther-
mogravimetric analysis (TGA) from room temperature to 1000 �C at three different heating rates in air to
predict the TG curves of sewage sludge (SS) and coffee grounds (CG) mixtures. A good agreement
between experimental and predicted data verified the accuracy of the ANN approach. The results of
co-combustion showed that there were interactions between SS and CG, and the impacts were mostly
positive. With the addition of CG, the mass loss rate and the reactivity of SS were increased while
charring was reduced. Measured activation energies (Ea) determined by the Kissinger-Akahira-Sunose
(KAS) and Ozawa-Flynn-Wall (OFW) methods deviated by <5%. The average value of Ea (166.8 kJ/mol
by KAS and 168.8 kJ/mol by OFW, respectively) was the lowest when the fraction of CG in the mixture
was 40%.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The shortage of accessible fossil fuels, and environmental
problems caused by combustion of fossil fuels have increased
interest in alternative and sustainable sources of energy
(Lopez-Velazquez et al., 2013). Sewage sludge (SS) is the residue
from the treatment process of domestic and industrial
wastewater that contains many organic compounds and harmful
substances (Seggiani et al., 2012). In its dry form, SS is one of
the potential options for an alternative fuel because of the high
quantity of organic matter with sufficiently high calorific value,
similar to that of brown coal (Garcia et al., 2013; Magdziarz
and Werle, 2014). There are several thermal technologies for
the recovery of useful forms of energy from sewage sludge, such
as pyrolysis, gasification, combustion and co-combustion
processes (Manara and Zabaniotou, 2012; Jayaraman and
GökalpZhou, 2015). Biomass is considered a clean, renewable
and environmentally friendly energy resource that contributes
to the reduction of net CO2 emission (Du et al., 2014; Gil
et al., 2015). It is often used to increase the volatile matter con-
tent and provide a more stable flame during the co-combustion
process. Although the low density of biomass does result in
escape from the combustion zone, the high heating value and
the low ash content compared to SS tends to reduce waste
and increase efficiency. Therefore, the co-combustion of SS and
biomass could avoid the disadvantages of each and improve
the overall combustion efficiency.
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Coffee is a popular drink prepared from roasted coffee beans,
with global production of approximately 500 billion cups per
annum (Li et al., 2014). Vast quantities of byproduct called coffee
grounds (CG) are obtained from the treatment of coffee to make
the powder that is mixed with hot water to prepare instant coffee.
Annually the amount of CG is gradually increasing with growth in
coffee consumption (Jeguirim et al., 2014). These residues have no
significant market and due to their large volume they also cause a
storage and disposal problem (Li et al., 2014). Currently, combus-
tion is the simplest andmost direct technology in utilization of bio-
mass, amounting to more than 97% of total global bio-energy
production (Peng et al., 2015). In this work, the potential of CG
as a blending biomass is studied to explore the possibility of tech-
nological breakthroughs. Thermogravimetric analysis (TGA) has
been widely used to investigate co-combustion characteristics
(Peng et al., 2015; Toptas et al., 2015). Numerous studies involving
the analysis of co-combustion have been reported (Sahu et al.,
2014; Goldfarb and Ceylan, 2015). However, there is limited
research concerning the co-combustion process of CG and SS and
their interaction is unclear (Liu et al., 2015). Additionally, in these
studies some complex multistep reactions during the co-
combustion process have handicapped the development of con-
ventional empirical modeling based on linear and statistical
approaches. These models have failed to confirm three kinetic
parameters simultaneously and explain the complexity of co-
combustion phenomena.

Artificial intelligence techniques such as artificial neural net-
works (ANNs) can be used for complex problems in a non-linear
fashion to attain high operational performance, and (once trained)
can be applied for anticipation and generalization at high speed
(Rivera et al., 2010; Vani et al., 2015). The basic processing ele-
ments of ANNs are interconnected neurons that create a structure
to form a process prediction model. The effectiveness of ANN mod-
els in the prediction of process parameters relating to energy-
related processes have been demonstrated (Mikulandric et al.,
2014; Ata, 2015; Gajic et al., 2015; Sahin, 2015), but the potential
to estimate parameters of the co-combustion processes of CG with
SS have not been studied.

In this study, the combustion characteristics of SS, CG and their
blends were investigated by TGA at three different heating rates
(10, 20 and 30 �C�min�1) and mixing ratios. Knowledge of the co-
combustion characteristics of sludge-biomass blends, in particular,
accurate estimation of thermal behavior, is essential to achieving
effective design and operation of industrial systems (Celaya et al.,
2015). Thus, this study is directed towards developing an ANN
model to accurately predict the thermal behavior of multistep
co-combustion reactions of SS-CG. Furthermore, activation
energies (Ea) for the fuel materials were analyzed by the
Kissinger-Akahira-Sunose (KAS) and the Ozawa-Flynn-Wall
(OFW) methods.
2. Materials and methods

2.1. Materials

A sample of SS was collected from an urban wastewater treat-
ment plant located in Guangzhou, China. CG was collected from
an instant coffee processing factory in China. Both materials were
air-dried and ground in a grinder, then sieved to obtain particles
less than 74 lm in diameter. All of the samples were dried in oven
at 105 �C for 24 h and stored in a desiccator. Mixture samples of SS-
CG were prepared at mixing ratios of 9:1, 8:2, 7:3 and 6:4 on a
weight basis, and were named SC91, SC82, SC73, SC64, respec-
tively. The proximate and ultimate analyses of SS and CG samples
are shown in Table 1.
2.2. Thermogravimetric analysis (TGA)

Non-isothermal experiments were conducted with a TG ana-
lyzer (NETZSCH STA 409 PC Luxx, Germany). Each sample
(10 ± 0.5 mg) was heated from room temperature to 1000 �C at
three different heating rates of 10, 20 and 30 �C�min�1 in air with
a flow rate of 50 ml�min�1. Each experiment was replicated three
times to ensure reproducibility, and the errors of experimental
results were within ±2%.

2.3. ANN model development

There are different types of training algorithms for ANN,
such as Leven-Marquardt (LM) (Vani et al., 2015; Yildiz
et al., 2016), gradient descent momentum (GDM), adaptive
learning rate (GDX) (Buyukada, 2016), scaled conjugate gradi-
ent (SCG) and Broyden-Fletcher-Goldfarb-Shanno quasi-Newton
(BFGS) (Pandey et al., 2016). In this study, LM algorithm is
chosen since it often has higher rates of convergence than
the other algorithms (Yildiz and Uzun, 2015). A multi-layer
perception (MLP) based feed forward ANN with a Leven-
Marquardt back propagation algorithm is used to predict the
TG curves of SS-CG blends. This ANN is the most widely used
for optimization studies because of its simplicity and high
accuracy (Mazrou, 2009). The MLP networks consist of an
input layer, two hidden layers and an output layer (Fig. 1).
In the MLP, all layers were interconnected by weights and
biases that adjusted it to model non-linear functions. In this
framework, the heating rate, mixing ratio and temperature-
dependent mass loss percent were used as the input vectors.
Hidden layers were employed to implement complex and
non-linear functions in the model (Vani et al., 2015). The
number of hidden layers, number of neurons and training
epochs were reset and fixed in terms of root mean square
error (RMSE), mean absolute error (MAE), mean bias error
(MBE) and coefficient (R2), by trial and error until the opti-
mal ANN architecture was obtained. These errors were evalu-
ated by Eqs. (1)–(3).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðHi � Hi;modelÞ2
vuut ð1Þ

MAE ¼ 1
N

XN
i¼1

jHi � Hi;modelj ð2Þ

MBE ¼ 1
N

XN
i¼1

ðHi � Hi;modelÞ ð3Þ

Lower values of both RMSE and MAE and higher values of R2

indicate better ANN models for the training data. The ANN
model was performed using the ANN toolbox available in
Matlab.

2.4. Kinetic theory

Kinetic equation for the thermal decomposition processes of the
different constituents is expressed based on rate of conversion as
follows:

da
dt

¼ kðTÞf ðaÞ ð4Þ

where t (min) is time, T is the absolute temperature, f(a) represents
the function of reaction mechanism, and a is the degree of conver-
sion that can be calculated as:



Table 1
The proximate analyses, ultimate analyses and heat value of SS and CG sample on air dried basis.

Sample Ultimate analyses (wt.%) Proximate analyses (wt.%) Qnet,d
a (MJ�kg�1)

C H Of N S Mb Vc Ad FCe,f

SS 34.04 5.03 23.48 6.09 1.67 5.50 48.80 43.38 2.32 12.02
CG 56.94 15.23 20.88 2.76 0.98 2.69 74.82 0.56 21.93 21.30

a Qnet, d, lower heating value on dry basis.
b M, moisture.
c V, volatile matters.
d A, ash.
e FC, fixed carbon.
f O and FC, Calculated by difference.

Fig. 1. Optimal ANN structure used for predicting co-combustion behavior of different SS-CG mixtures.
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a ¼ W0 �Wi

W0 �Wf
ð5Þ

where W0, Wi and Wf stand for initial, instantaneous, final masses,
respectively.

k(T) is temperature dependent rate constant as expressed by
Arrhenius Law as:

kðTÞ ¼ A exp � Ea

RT

� �
ð6Þ

where A is the pre-exponential factor, Ea (J�mol�1) is the activation
energy of the reaction, R is the universal gas constant,
8.314 J�mol�1�K�1. By substituting Eq. (3) in Eq. (1) gives:

da
dt

¼ Ae �Ea
RTð Þf ðaÞ ð7Þ

Taking into account that the temperature is a function of time
and that it is increasing with the constant heating rate b(K�s�1),
then b is written below:

b ¼ dT
dt

¼ dT
da

da
dt

ð8Þ
Eqs. (7) and (8) can be combined and rearranged to give:

gðaÞ ¼
Z a

0

da
f ðaÞ ¼

Z T

0

A
b
e�Ea=RTdT ¼ AEa

bR

Z 1

x
u�2e�udu ¼ AEa

bR
PðxÞ

ð9Þ
where x = Ea/RT, the function P (x) has no exact solution, hence Eq.
(9) can be solved by numerical methods or approximations. The
name of iso-conversional methods differs by the type of approxima-
tion method used.

In this study, two kinds of iso-conversional methods, Kissing-
Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) were applied
to calculate the activation energy (Ea).

The KAS method (Kissinger, 1957; Akahira and Sunose, 1971)
uses approximation of P (x)=x�2e�x to Eq. (9). After rearrangement,
the equation is shown below:

ln
b

T2

� �
¼ ln

AEa

RgðaÞ
� �

� Ea

RT
ð10Þ

where the plot of ln(b/T2) against 1/T gave a straight line from
which the slope can be used to determine the Ea.

The FWO method (Ozawa, 1965; Flynn and Wall, 1966) was
derived from Doyle’s approximation (Doyle, 1961) with Eq. (9),
the equation becomes:
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ln b ¼ ln
AEa

RgðaÞ
� �

� 5:331� 1:052
Ea

RT
ð11Þ

where the value of Ea for different conversion values can be calcu-
lated from the slope of lnb versus 1/T.
3. Results and discussion

3.1. Combustion process of the pure materials

TG and DTG curves of pure materials obtained at a heating rate
of 20 �C�min�1 are shown in Fig. 2. There are remarkable differ-
ences in the combustion behavior for both pure samples. The
Fig. 2. TG(a) – DTG(b) curves of SS, CG and their
combustion process of SS was divided into two phases. The first
decomposition phase occurs in the range of 180–395 �C and the
second in 395–640 �C. These two phases are caused primarily by
the decomposition of carbohydrates and lipids (Magdziarz and
Werle, 2014). After these processes, 52% of the total mass was
degraded. The thermal degradation of the CG involved two discrete
phases. A main devolatilization zone occurs between 150 �C and
335 �C due to the oxidative degradation of hemicellulose and cellu-
lose (Yang et al., 2006; Zhou et al., 2013). The second occurs in the
410–475 �C temperature range where the thermal degradation is
closely related to the lignin decomposition and the combustion
of char (Jeguirim et al., 2014). In fact, a shoulder at 448 �C appears
on the right of the second decomposition peak. This behavior is due
mixtures at the heating rate of 20 �C�min�1.
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to the higher lignin content of the CG that degrades over a wide
temperature range from 160 to 900 �C (Yang et al., 2006).

Comparison of SS and CG thermal degradation shows that the
maximum mass loss rate (DTG curves) of CG is higher than for
SS. This can be attributed to the release of volatile matter in the
CG that burns more quickly and intensely. The maximum temper-
ature in the DTG curves of CG appears at a higher temperature,
296 �C, than for SS, 290 �C. The reason for this phenomenon is that
the CG is composed of a mixture of galactomannans, cellulose and
arabinogalactans, confirming higher inter-chain hydrogen bonds
and ordered structure (Simões et al., 2014).

3.2. Co-combustion of SS-CG blends

The TG and DTG profiles of the SS-CG mixture samples at the
heating rate of 10 �C�min�1 are displayed in Fig. 2 and lie between
the profiles of the pure samples. In the DTG curves of the mixtures,
two oxidation stages can be observed. The first one at tempera-
tures of 160 �C and 385 �C, corresponds to the hemicellulose and
cellulose decomposition. In the second stage, up to �585 �C, a
broader peak is present, which is due to the release of volatile mat-
ter in the SS that burns slowly over the whole temperature range,
together with the char. To investigate the combustion characteris-
tic of SS and CG, the comprehensive combustion index S is defined
as follows (López-González et al., 2014):

S ¼ ðdW=dtÞmaxðdW=dtÞmean

T2
i Tf

ð12Þ

where (dW/dt)max refers to the maximum mass loss rate, (dW/
dt)mean is the average mass loss rate, Ti is the ignition temperature
and Tf is the burnout temperature. The bigger the index S is, the
more vigorously the samples burned and the quicker char burned
out.

The co-combustion characteristic parameters of the SS-CG mix-
tures are shown in Table 2. As observed in Table 2, the ignition
temperature (Ti) and the burnout temperature (Tf) of CG are
289.1 �C and 466.4 �C, and the Ti and the Tf of SS are 240.6 �C and
675.6 �C. The Tf of CG is lower 209.2 �C than SS. This finding shows
that SS contains more nonflammable material than CG. Although
the volatile matter of CG is higher than that of SS, the Ti of SS is
lower 48.5 �C than CG that can primarily be attributed to differ-
ences in composition and structure. SS is composed of lower
organic matter, such as humic acids, fulvic acids and polycyclic
aromatic hydrocarbon (Kulikowska, 2016; Oleszczuk, 2009). These
compounds have a simple structure and have been broken down
by biological oxidation. As a result, these organisms are easy to
decompose at high temperature. In contrast, CG is primarily
formed by proteins, carbohydrate and lipid (López-Barrera et al.,
2016) that are macromolecular organic compounds with complex
structures. Therefore, CG needs more energy and higher tempera-
Table 2
Combustion characteristic parameters of SS, CG and their mixtures.

Samples Ti
a (�C) Tf

b (�C) Tm
c (�C)

SS 240.6 675.6 290.3
SC91 250.8 624.6 304.7
SC82 264.0 607.3 309.6
SC73 272.6 600.8 311.3
SC64 278.4 582.6 311.5
CG 289.1 466.4 296.8

a Ti, the ignition temperature.
b Tf, the burnout temperature.
c Tm, the peak temperature.
d DTGmax, the maximum mass loss rate.
e Mf, the residual mass.
f S, the comprehensive combustion index, unit is min�2��C�3.
ture to break the chemical bonds. The residue mass percentages
of CG and SS are 0.25% and 47.23% that are almost consistent with
the ash content in Table 1.

Fig. 3 presents the tendency of Ti, Tf, Tm, Mf, DTGmax and S
according to the mixtures with different CG fractions (10–40 wt.
%). The columns for the Ti, Tm, DTGmax and S reveal an increasing
trend as the CG proportion increases while Tf and Mf show a
decreasing trend. From Fig. 3a and c, the ignition temperature
(Ti) and the peak temperature (Tm) are not linear with the increase
of CG but have an exponential relationship, with the values of R2

close to 1 and 0.9951, respectively. As seen in Table 2, the Tm for
the mixture are higher than for pure SS and CG indicating the pres-
ence of interaction between the fuels composing. The maximum
slope of the fitting curves occur when the CG proportion is below
20% and declines gradually with the increase of CG content, hinting
at a decreasing trend in the intensity of the suppressive effect. As
exhibited in Fig. 3b and e, the burnout temperature (Tf) and the
residual mass (Mf) are linearly proportional to the CG content, their
correlation coefficients (R2) are as high as 0.9571 and 0.9958,
respectively. Moreover, the Tf value of the mixture sharply
decreases 51 �C when CG = 10 wt.%. Such phenomenon indicates
that the addition of CG might improve the burnout of SS.

The DTGmax shows a strong linear trend with the CG content
and its R2 is 0.9959. It can be seen that an increase of the CG frac-
tion in the mixture raises the intensity of the first peak, which sug-
gests that the higher proportion of CG, the higher reactivity of the
mixture (Zheng and Koziński, 2000). Fig. 3f shows that the index S
has an exponential relationship with the proportion of CG and its
R2 is 0.9998. As shown in Table 2, the index S of CG is much higher
than that of SS. Increasing CG content in the mixture causes the
value of the index S to increase from 1.192 � 10�7 to
32.109 � 10�7 min�2��C�3. When the value of the comprehensive
combustion characteristic index S is greater than 2, it could be con-
sidered as a good general combustion performance (Parshetti et al.,
2014). It is observed that when CG fraction in the mixture is more
than 20 wt.%, the index S is greater than 2. This suggests that the
blending of CG can enhance the combustion performance of SS.
These results are due to the high volatile matter/(volatile matter
+ fixed carbon) ratio and high carbon content of CG (Parshetti
et al., 2014). Therefore, the mixture burns out much earlier and
the combustion characteristics of the mixture improve with an
increase of the CG ratio.
3.3. Interaction investigation of co-combustion for SS-CG mixtures

The superposition property was applied to investigate whether
there is an interaction between SS and CG during the mixture
decomposition, where the theoretical TG/DTG curves of mixture
Ymix can be calculated based on the mass fraction of single compo-
nents (Aboulkas et al., 2008):
DTGmax
d (%/min) Mf

e (%) Sf (10�7)

-4.15 47.23 1.192
-5.16 44.02 1.577
-6.98 39.49 2.145
-9.01 34.70 2.830
-11.32 31.02 3.727
-55.30 0.25 32.109



Fig. 3. The relationship between Ti(a), Tf(b), Tm(c), DTGmax(d), Mf(e) and S(f) and CG fractions (10–40 wt.%) in the mixture.
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Ymix ¼ f 1YSS þ ð1� f 1ÞYCG ð13Þ
where the coefficients f1 and (1 � f1) are the mass fractions of SS
and CG at any temperature, YSS or YCG is the TG/DTG of the pure
sample experiencing a process in the same operational conditions
as the mixture. DW (DW = TGexperimental � TGcalculated) is introduced
as the difference of mass remaining between the experimental data
and the calculated values to explicitly interpret the interaction and
the results are depicted in Fig. 4b. Thus, values of DW that are
positive or negative may indicate catalysis on solid phase and
promotion in devolatilization, respectively.

The calculated TG/DTG curves of SC64 are depicted in Fig. 4a
based on the measured TG/DTG curves of the pure constituents.
It can be seen that the calculated curve matches the experimental
one at the initial stage. As exhibited in Fig. 4b, the value of DW
remains approximately zero at this stage meaning that the interac-
tion between SS and CG is not obvious at low temperature. Subse-
quently, DW first increases at 252 �C and reaches the first peak
(DWmax1) at 308 �C then decreases until 389 �C. The value of DW



Fig. 4. (a) Experimental and calculated TG/DTG curves of SC64 at 20 �C�min�1; (b) DW of SC64.
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increases again when reaching the second peak (DWmax2) at 468 �C
and then decreases again. This decrease ends at 556 �C where a
plateau appears with a height of approximately 2.3% that is main-
tained until the end.

From Fig. 4a, it can be seen that a shift of the experimental DTG
curve compared to the calculated curve occurs at the main decom-
position region. The maximum mass loss rate in the experiment is
much lower than the calculation, suggesting a suppressive effect of
the interactions on devolatilization. If there are no interactions
during the co-combustion processes, the DTG peaks present in
the temperature range of 400–620 �C should occur separately at
430 �C, 450 �C and 520 �C – with a shoulder at 450 �C attached
on the right of the DTG peak at 430 �C. When the SS and CG are
mixed, there is only one peak for SC64, which implies the existence
of interactions in this stage and that the reactions in relation to
mineral decomposition, carbonaceous residue thermal cracking
and gasification occur simultaneously rather than in series (Duan
et al., 2009; He et al., 2015). The experimental DTG values are lar-
ger, for the most part, than those obtained by calculation at
approximately 465–620 �C, suggesting that the interactions might
facilitate gasification. Presently, the mechanism of the interactions
in decomposition of the SS and CG mixture is seldom studied. Pre-
vious research has found that after removing the mineral matter of
paper mill sludge, the maximum mass loss rate and the peak
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temperature increase significantly (Vamvuka et al., 2009; Peng
et al., 2015). Therefore, the interaction could be interpreted as
char and gas evolved from the CG decomposition reacting with
the SS residue. When the CG as the additive is blended, it
could release more heat to accelerate the endothermic reaction,
promoting the decomposition and combustion of the residue, but
components in the SS may restrain the interaction and lead to
greater charring.

3.4. Effect of heating rate

Typical TG and DTG curves at different heating rates (10, 20
and 30 �C�min�1) for the SC64 sample are demonstrated in
Fig. 5. TG(a) – DTG(b) profiles of S
Fig. 5. The heating rate had a significant effect on the combustion
behavior of the mixture samples, where the positions of the peaks
shift to the right with increased heating rates. The maximum
peaks of conversion are 302, 311 and 316 �C for heating rates of
10, 20 and 30 �C�min�1. This phenomenon is common for
non-isothermal heating (Kan et al., 2014a,b; Lin et al., 2010). It
could be due to the heat conduction of the particles that can
result in heat diffusion. At a low heating rate, the heating of
samples occurs more gradually and result in better heat transfer
from the surface to the inner portion, generating a narrow
temperature gradient across the particles. At a high heating rate,
the relatively steep temperature gradient leads to a lag of
reactions (Kan et al., 2014a,b).
C64 at different heating rates.



Table 3
Comparison of different ANN network structure performances.

Model Inputs Network topology RMSE MBE MAE R2

ANN1 Mixture ratio, heating rate, temperature 3⁄1 5.178 �3.125 4.266 0.9808
ANN2 5⁄1 5.018 �3.144 4.137 0.9819
ANN3 7⁄1 3.012 1.651 2.316 0.9943
ANN4 11⁄1 4.395 3.580 3.789 0.9927
ANN5 13⁄1 7.687 7.103 7.103 0.9794
ANN6 15⁄1 8.972 7.928 7.928 0.9734
ANN7 17⁄1 7.192 2.737 5.710 0.9776
ANN8 19⁄1 7.074 3.505 5.625 0.9791
ANN9 3⁄3⁄1 3.263 �1.091 2.443 0.9922
ANN10 3⁄5⁄1 4.393 �2.754 3.618 0.9920
ANN11 3⁄7⁄1 3.165 �2.144 2.413 0.9837
ANN12 3⁄11⁄1 1.848 0.997 1.121 0.9985
ANN13 3⁄13⁄1 6.203 5.030 5.185 0.9856
ANN14 3⁄15⁄1 0.792 �0.200 0.680 0.9997
ANN15 3⁄17⁄1 2.179 1.283 1.650 0.9980
ANN16 3⁄19⁄1 0.482 0.243 0.371 0.9999
ANN17 5⁄3⁄1 0.866 0.425 0.582 0.9996
ANN18 5⁄4⁄1 4.395 2.493 3.200 0.9902
ANN19 5⁄8⁄1 3.576 �1.345 2.705 0.9944
ANN20 5⁄10⁄1 3.073 �1.557 2.403 0.9961

Fig. 6. Comparisons of testing performance of ANN16 model for SC82 at different heating rates.
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3.5. ANN model for co-combustion of SS-CG blends

The combustion data are divided into two groups with 80% used
for training and 20% used for testing. Different ANN configuration
performances with a resetting of hidden layers and neurons based
on the LM algorithm are presented in Table 3. Total training epochs
(iterations) of the model are set to 2000 and the performance goal
is 10�5. Linear (purelin), log-sigmoid (logsig) and hyperbolic
tangent-sigmoid (tansig) functions are the three most commonly
used transfer functions. The selection of a suitable function can
be conducted by considering influencing factors such as the degree
of complexity of the problem, the node numbers of the training
group, and the bias and weight of the net to achieve the most rapid
convergence (Caner et al., 2011). In this network topology, the acti-
vation function of neurons in the input layer and hidden layers is
assumed as a tansig function, and the activation function of neu-
rons in the output layer is assumed as a pure linear (purelin) func-
tion (Yildiz et al., 2016). From Table 3, the ANN16 provided the
lowest RMSE value. As seen from Fig. S1, the values of the regres-
sion coefficients of this network were 0.9999 and 0.9998 for train-
ing and testing, respectively. Therefore, the ANN16 was chosen as
the suitable model and used to simulate the mass loss percent for
the rest of the mixing ratios. The structure of ANN16 is shown in
Fig. 2. The ANN14 architecture consisted of four layers: an input
layer with 3 input parameters (mixing ratio, heating rates and tem-
perature), two hidden layers, the first one with 3 and the second
with 19 hidden neurons, and an output layer with 1 output
parameter-mass loss percent (3 � 19 � 1). Predictions of the mass
percent with the ANN16 network as a function of the measured
results are shown in Fig. 6. The agreement between the experimen-
tal and predicted TG curves confirmed the predictive power of the
ANN modeling.



Table 4
Ea and corresponding R2 of SS and SS/CG mixture in air by KAS and OFW methods.

Samples a KAS method OFW method

E (kJ/mol) R2 E (kJ/mol) R2

SS 0.2 207.34 0.9685 205.83 0.9711
0.3 227.39 0.9875 225.32 0.9885
0.4 223.94 0.9975 222.53 0.9977
0.5 174.89 0.9991 176.47 0.9992
0.6 128.58 0.9963 133.35 0.9970
0.7 135.75 1.0000 140.89 1.0000
0.8 139.74 1.0000 145.20 1.0000
Average 176.80 178.51

SC64 0.2 181.19 0.9995 181.18 0.9995
0.3 198.78 0.9971 198.19 0.9974
0.4 197.66 0.9966 197.36 0.9969
0.5 178.28 0.9996 179.36 0.9996
0.6 134.80 0.9987 138.81 0.9989
0.7 136.99 1.0000 141.72 1.0000
0.8 139.83 0.9998 145.00 0.9998
Average 166.79 168.80

SC73 0.2 222.18 0.9609 220.10 0.9639
0.3 218.38 1.0000 216.81 1.0000
0.4 214.21 0.9944 213.10 0.9949
0.5 174.44 0.9966 175.74 0.9969
0.6 117.71 1.0000 122.58 1.0000
0.7 123.00 0.9982 128.43 0.9984
0.8 127.50 0.9977 133.29 0.9980
Average 171.06 172.86

SC82 0.2 263.65 0.9662 259.47 0.9684
0.3 233.22 0.9979 230.90 0.9981
0.4 217.69 0.9982 216.45 0.9983
0.5 168.76 0.9990 170.40 0.9991
0.6 118.22 0.9992 123.18 0.9994
0.7 123.07 0.9999 128.61 0.9999
0.8 120.93 0.9981 127.12 0.9984
Average 177.94 179.45

SC91 0.2 244.83 0.9628 241.51 0.9654
0.3 221.02 0.9910 219.27 0.9917
0.4 209.79 0.9998 208.98 0.9998
0.5 155.85 0.9997 158.22 0.9998
0.6 109.89 0.9996 115.38 0.9997
0.7 117.98 0.9984 123.85 0.9986
0.8 119.56 0.9982 125.90 0.9985
Average 168.42 170.45
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3.6. Kinetic analysis

According to Eqs. (10) and (11), the activation energies (Ea) of
several conversions (a) can be determined from the slope of a
straight line obtained from a plot of ln(b/T2), lnb against 1/T. The
heating rates of 10, 20 and 30 �C�min�1 were used to estimate Ea
by iso-conversional KAS and OFW models within a = 0.2–0.8. The
Ea values and the corresponding determination coefficients (R2)
for SS and SS-CGmixtures are listed in Table 4. As shown in Table 4,
all the values of R2 are equal to or greater than 0.96 meaning that
the KAS and OFW models are well correlated with the combustion
process.

In this analysis, the Ea values corresponding to the designated a
are the average values of reactions at each point in a because the
thermal decomposition of samples involved various complex reac-
tions that are difficult to analyze separately (Kim et al., 2010). The
values of Ea obtained by the KAS and OFWmethods are very similar
with a deviation below 5%, indicating the reliability of calculations
using these two methods (Lopez-Velazquez et al., 2013). Activation
energy is the minimum energy required to start a chemical reac-
tion and a higher Ea value means a more difficult reaction is gener-
ated. Ea can also be used to determine the reactivity and sensitivity
of a reaction (Gai et al., 2013).

Kinetic analysis results show that Ea is highly dependent on a,
which implies that SS and CG co-combustion is a complex process
consisting of different reactions. For the KAS model, the Ea value of
SS increases from 0.2 to 0.3 conversion and decreases between 0.3
and 0.6 conversion then raises after 0.6 conversion. A similar trend
was also observed in the OFW model. In respect to the mixtures, it
is important to note that SC64 has the lowest Ea values from the 0.2
to 0.4 conversions suggesting that the 40 wt.% CG portion facili-
tates the devolatilization reaction of the mixture at low tempera-
ture. However, after the 0.4 conversion, SC64 obtains the highest
value followed by SS and SC91, revealing a suppressive and accel-
erative impact of the 40 and 10 wt.% CG fractions on the mixture
decomposition at high temperature. From Table 4, an explicit com-
parison of the average of Ea for mixtures by both methods can be
made. SC64 obtains the lowest average Ea that is 166.8 kJ/mol cal-
culated by KAS and 168.8 kJ/mol obtained by OFW. Furthermore,
the Ea average of SC64 is lower than SS, implying a synergistic
effect between the components of the mixture that can potentially
be attributed to the influences of char within SS on the decompo-
sition of CG. This finding is in agreement with the results obtained
from the analysis of DTGmax that suggest that the presence of CG
improves the reactivity of the mixture. Ceylan and Topçu (2014)
studied the kinetic mechanism of hazelnut husk and calculated
Ea values between 95 and 162.1 kJ/mol. Damartzis et al. (2011)
reported that the Ea values for cardoon stems and cardoon leaves
are 224.1 kJ/mol and 350.07 kJ/mol. Peng et al. (2015) examined
the thermal kinetics of textile dyeing sludge-microalgae blends
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and reported that the minimal value is 227 kJ/mol. This study is the
first report on the co-combustion kinetics of SS-CG blends and the
calculated average value of Ea for SS-CG mixtures suggest that they
have considerable potential as a fuel.

4. Conclusions

The co-combustion characteristics of SS and CG have been
investigated for the first time using a TGA and ANN model. CG
addition increased DTGmax and the reactivity of SS. Interactions
between SS and CG positively affected the combustion process
and the extent of the impact varied with temperature region.
When the CG proportion was increased, Ti, DTGmax and S increased,
but Tf and Mf decreased. The minimum Ea average was obtained at
CG = 40%. The agreement between ANN values and experimental
data verified its ability to accurately predict co-combustion behav-
ior provided that the heating rate, mixing ratio and temperature
are known.
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