1	Dual roles of capsular extracellular polymeric substances in the
2	photocatalytic inactivation of Escherichia coli: Comparison of E. coli
3	BW25113 with its isogenic mutants
4	
5	Guocheng Huang, ^a Dehua Xia, ^a Taicheng An, ^{b*} , Tsz Wai Ng, ^a Ho Yin Yip, ^a Guiying Li, ^b Huijun
6	Zhao, ^c Po Keung Wong ^{a*}
7	
8	School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR,
9	China ^a ;
10	State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese
11	Academy of Sciences, Guangzhou 510640, China ^b ;
12	Centre for Clean Environment and Energy, Griffith School of Environment, Griffith University,
13	Queensland 4222, Australia ^c
14	
15	
16	
17	
18	*Corresponding Authors:
19	Prof. Taicheng An, Tel: +86-20-85291501; Fax: +86-20-85290706; E-mail: antc99@gig.ac.cn
20	Prof. Po Keung Wong, Tel: +852-39436383; Fax: +852-26035767; E-mail: <u>pkwong@cuhk.edu.hk</u>
21	

41

22	The dual roles of capsular extracellular polymeric substances (EPS) in the
23	photocatalytic inactivation of bacteria were demonstrated in a TiO ₂ -UVA system, by
24	comparing wild type Escherichia coli BW25113 and isogenic mutants with
25	up-regulated and down-regulated production of capsular EPS. In a partition system in
26	which direct contact between bacterial cells and TiO_2 particles was inhibited, an
27	increase in EPS was associated with increased bacterial resistance to photocatalytic
28	inactivation. In contrast, when bacterial cells were in direct contact with TiO ₂ particles,
29	an increase in capsular EPS decreased cell viability during the photocatalytic
30	treatment. When taken together, these results suggest that although capsular EPS can
31	protect bacterial cells by consuming photo-generated reactive species, it also
32	facilitates photocatalytic inactivation of bacteria by promoting the adhesion of TiO_2
33	particles to the cell surface. Fluorescence microscopic and scanning electron
34	microscopic analyses further confirmed that high capsular EPS density led to more
35	TiO ₂ particles attaching to cells and forming bacteria-TiO ₂ aggregates. Calculations of
36	interaction energy, represented by extended Derjaguin-Landau-Verwey-Overbeek
37	(XDLVO) potential, suggested that the presence of capsular EPS enhances the
38	attachment of TiO ₂ particles to bacterial cells via acid-base interactions. Consideration
39	of these mechanisms is critical for understanding bacteria-nanoparticle interactions
40	and the photocatalytic inactivation of bacteria.

42	In recent years, heterogeneous photocatalytic processes that use semiconductor
43	catalysts have emerged as promising microbial disinfection technologies (1-7).
44	Among the various photocatalysts being used, titanium dioxide (TiO ₂) has received
45	the greatest interest and has been extensively studied because of its efficiency and
46	perceived environmental safety. Photo-generated reactive charge carriers (e $\mbox{ and }\mbo$
47	and reactive oxygen species (ROS: •OH, •O2 and H2O2) are considered to be the
48	major bactericidal agents (8).

Numerous studies have proven the ability of these reactive species to inactivate 49 various kinds of pathogenic bacteria (9-11). It is widely accepted that the bactericidal 50 effect of TiO₂ is due to the destruction of the cell envelope by ROS generated on the 51 52 surface of TiO_2 photocatalysts (12). However, considerably less is known about the effect of biological factors on photocatalytic inactivation of bacteria. One biological 53 54 factor that is likely to influence photocatalytic activity is the presence of capsular bacterial extracellular polymeric substances (EPS), which typically comprise 55 polysaccharides and proteins (13). 56

Located at or outside the cell surface, EPS have many functions including facilitating bacterial adhesion, providing a protective barrier against environmental stresses, maintaining hydration, and storing nutrients (13). The protective function has been reported to significantly increase bacterial tolerance to antibiotics and

AEM

disinfectants both by limiting the transport of biocides and via a direct reaction with the EPS (14, 15). The ROS produced on the surface of TiO_2 act as chemical biocides against bacteria. Therefore, it is reasonable to postulate that capsular EPS can protect cells from oxidative damage.

Previous studies of the effect of EPS on ROS-mediated inactivation of bacteria 65 have reported variable results. Liu et al. compared the inactivation efficiencies of 66 heterotrophic bacteria biofilm with the same bacteria without EPS using 67 nitrogen-doped metal oxide a photocatalyst (16). They observed higher inactivation 68 efficiency when the soluble EPS were removed by centrifugation, supporting the 69 hypothesis that EPS act as a protective barrier against ROS-mediated damage to cells. 70 71 However, a systematic study by Gong et al. showed that the amount of EPS had no observable effect on the susceptibility of four *Escherichia coli* (E. coli) isolates to 72 73 •OH generated via nitrate photolysis (17). The discrepancy between these results may 74 be attributable to differences in the amount of EPS. The EPS levels within the heterotrophic biofilm, which can be up to 90% of the organic carbon (18), are much 75 higher than those in the capsule of E. coli isolates. Nonetheless, it must be noted that 76 other factors such as light source, ROS source (photocatalysis or photosensitization) 77 78 and EPS extraction methods were also different in these studies and may account for the discrepant results. To clarify the role of EPS in the photocatalytic inactivation of 79

80	bacteria, it is necessary to conduct a direct comparison by using the same model
81	photocatalysts as well as the same bacterium with differing levels of capsular EPS.
82	The presence of capsular EPS has a significant effect on the characteristics of the
83	cell surface and may also determine the adhesion of TiO_2 and subsequently influence
84	photocatalytic inactivation efficiency. As photo-generated ROS are highly reactive
85	and short-lived (19, 20), the transport of bacterial cells to the site of surface-generated
86	ROS remains a rate-limiting step in photocatalytic bacterial inactivation (3). Many
87	studies have shown that close contact between bacterial cells and TiO_2 particles
88	increases the extent of oxidative damage (21-23). The production of capsular EPS has
89	been shown to facilitate bacterial adhesion onto various substrates, and the bacterial
90	attachment is well explained and predicted by the extended XDLVO theory (24).
91	Nevertheless, the role of capsular EPS in the physicochemical interactions between
92	bacterial cell and TiO_2 particles during the photocatalytic inactivation of bacteria has
93	yet to be explored (25). A deeper understanding of how capsular EPS affects the
94	adhesion of TiO_2 to bacterial cells would allow us to better interpret the underlying
95	photocatalytic inactivation mechanism, and thereby predict the antibacterial activity
96	of photocatalysts.
97	The primary objective of this study was to better understand the roles of capsular

98 EPS during the photocatalytic inactivation of bacteria, using wild type E. coli

99	BW25113 and two isogenic mutants with reduced and increased capsular EPS
100	secretion in a TiO_2 -UVA system. The photocatalytic inactivation of the wild type
101	(parental strain) and mutant bacterial cells was compared under the same conditions
102	with and without direct contact with TiO_2 particles (a non-partition system and
103	partition system, respectively). The ROS involved in the inactivation mechanisms
104	were investigated using a scavenger addition study, FT-IR and fluorescence
105	microscopic analyses. Additionally, the interaction of TiO_2 with bacterial cells in the
106	dark was investigated by fluorescence microscopy and scanning electron microscopy
107	and XDLVO potential analysis was used to interpret the results.

108 MATERIALS AND METHODS

Bacterial strains and culture. E. coli strain BW25113 (wild type), and its 109 single-gene deletion mutants JW2034 (cpsB gene deletion) and JW5917 (rcsC gene 110 deletion) were obtained from the Coli Genetic Stock Center (CGSC, Department of 111Biology, Yale University). All of the strains belong to the Keio collections (Table S1) 112 (26), which are widely used for the study of genetic effects in photocatalytic bacterial 113 inactivation (27-29). Detailed comparisons between the bacterial strains and the wild 114 115 type can be found in Table S1. The two capsular EPS mutants, E. coli JW2034 and E. 116 coli JW5917, were expected to have different amounts of colanic acid, which is a 117 capsular exopolysaccharide found in many enterobacteria (30, 31). Colanic acid

124	Photocatalytic inactivation. The photocatalytic inactivation was carried out in a
123	previous studies (32, 33).
122	rpm for 16 h. The cultures were then harvested according to the method used in
121	yeast extract, 5 g/L peptone and 5 g/L sodium chloride) at 37 °C and agitated at 200
120	Nutrient Broth 'E' (Lab M, Lancashire, UK; ingredients: 1 g/L beef extract, 2 g/L
119	method with an average of three replicates. The bacterial cells were cultured in
118	contents were expressed as glucose content according to the phenol-sulfuric acid

photocatalytic reactor and TiO₂ (P25, Degussa Corporation, Germany) was used for 125 all of the experiments. A UV tube (λ_{max} = 365 nm, 15 W, 60 Hz, Cole-Parmer, USA) 126 127 was chosen as a light source, and the light intensity was measured with a UVX digital radiometer (UVP, Upland, CA, USA), and fixed at 0.18 mW/cm². In the non-partition 128 system (Fig. 1a), the reaction mixture consisted of 2×10^7 cfu (colony forming 129 130 unit)/mL and 100 mg/L TiO₂ in 50 mL saline (0.9% NaCl) solution. In the partition system (Fig. 1b), a semipermeable membrane compartment with 20 mL bacterial cells 131 in saline solution (2×10^7 cfu/mL) was immersed in 50 mL saline with 100 mg/L TiO₂. 132 133 A magnetic stirrer was used to ensure suitable suspension in the mixture. At different time intervals, 1 mL aliquots of the cell suspension were collected and serially diluted 134 with sterilized saline solution; 0.1 mL of the diluted sample was then immediately 135 spread on Nutrient Agar (Lab M, Lancashire, UK) plates. The ingredients of the 136

137	prepared plates were 5 g/L peptone, 3 g/L beef extract, 8 g/L sodium chloride with 1.2
138	g/L agar. Subsequently, the agar plates were incubated at 37 °C for 24 h to determine
139	the number of surviving cells (in cfu). For comparison, dark (photocatalyst and
140	bacterial cells without light), light (bacterial cells and light without photocatalyst) and
141	negative controls (bacterial cells alone) were also included in the study. All glassware
142	used in the experiments was washed with deionized (DI) water, and then autoclaved at
143	121 °C for 20 min to ensure sterility. All treatments and control experiments were
144	performed in triplicate.
145	EPS purification and quantification. The capsular EPS were extracted,
146	purified, and quantified according to a previous study with some modification (34). In
147	brief, cells were washed twice in saline solution by centrifugation (5000 rpm, 10 min,
148	4°C) to remove any traces of the media. The washed cells were resuspended in saline
149	solution and incubated for 1 h in a 30°C incubator. The supernatant was recentrifuged
150	at 13000 rpm at 4°C for 60 min to remove residual cells. The resulting supernatant
151	(containing the EPS) was precipitated with 1:3 volume cold ethanol and held at -20°C
152	overnight. The precipitate was separated by centrifugation at 13000 rpm at 4°C for 30
153	min. The pellet was redissolved in ultrapure water, dialyzed (molecular weight cut-off
154	of 3500 Da, Spectrum Laboratories, Inc.) for 48 h against ultrapure water and then
155	freeze-dried. The EPS were redissolved and then analyzed using the phenol-sulfuric

156 acid method with glucose as standard.

Bacterial cell characterization. The zeta potentials of TiO_2 P25 and bacterial cells in saline solution (*ca.* 154 mM NaCl) were measured with a ZetaPlus system (Brookhaven Instruments Co., New York) at 25 °C.

Fourier Transform Infrared Spectroscopy (FT-IR) was used to probe the chemical 160 and structural composition of the bacteria and assess changes induced by the 161 photocatalytic treatment. Bacterial cells were stained with a LIVE/DEAD BacLightTM 162 Bacterial Viability Kit (L7012, Molecular Probes, Inc., Eugene, OR) and cell 163 membrane integrity was monitored with a fluorescence microscope and a microplate 164 reader, following the procedure recommended by the manufacturer. The live bacterial 165 166 cells with intact membranes were stained green; dead bacterial cells with damaged membranes were stained red. Scanning electron microscopy (SEM) was used to 167 168 observe the interaction of bacterial cells and TiO₂. Detailed descriptions of these 169 procedures are described in the supporting text.

170 Scavenger study. Scavenger experiments were conducted by adding various 171 scavengers to the non-partition system. Isopropanol was used to remove •OH 172 diffusing into the solution, sodium oxalate (Na₂C₂O₄) to remove h^+ , 173 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMPOL) to remove $\bullet O^{2-}$, Cr(VI) to 174 remove e⁻, and Fe(II)-EDTA to remove H₂O₂ (35). The concentration of the scavenger

AEM

added was optimized according to our previous studies (32, 35) (0.5 mM for sodium
oxalate, 5 mM for isopropanol, 0.05 mM for Cr(VI), 2 mM for TEMPOL and 0.1 mM

177 for Fe(II)-EDTA).

178 **XDLVO interaction between bacterial cells and TiO₂ nanoparticles.** The 179 extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory was used to model 180 the interaction between bacterial cells and TiO₂ nanoparticles. This theory considers 181 the total energy of adhesion to be the sum of the electrostatic double layer (EL) 182 interaction energy, Lifshiitz-van der Waals (LW) interaction energy, and the Lewis 183 acid-base (AB) (i.e., hydrophobic) interaction energy (36-39). Details of the 184 procedures are described in the supporting text.

Statistical analysis. Results are expressed as mean \pm standard deviation. For all of the inactivation experiments, the differences between the survival of cells of wild type and mutant strains at different exposure times were determined using repeated-measures ANOVA. In addition, the differences between the measured parameters were determined using one-way ANOVA. All statistical analyses were carried out using SPSS 16.0 statistical software (IBM Corporation, Somers, NY), and p < 0.01 was considered to be statistically significant.

192 RESULTS AND DISCUSSION

193 Characterization of bacteria. The *E. coli* BW25113 wild type and isogenic

194

195	EPS in the photocatalytic inactivation of bacteria. Fig. 1c shows the capsular EPS
196	content of three bacterial strains. E. coli JW2034 has a knockout mutation in the cpsB
197	gene, which is involved in colanic acid biosynthesis, thus colanic acid production is
198	reduced compared with wild type ($p < 0.01$). The $cpsB^{-}$ mutant is still able to produce
199	some capsular EPS, however, probably due to the complementation of other cps genes
200	(40). In contrast, E. coli JW5917 has a mutation in the regulatory gene, rcsC, so
201	colanic acid production is enhanced compared with the wild type ($p < 0.01$).
202	FT-IR was used to probe the chemical and structural aspects of the total biomass
203	of bacteria. The specific functionality and band assignments were based on previous
204	reports for bacteria and model organic compounds (41-43). Information on the
205	composition and functionality of the cell constituents was extracted from the regions
206	3000-2600 cm^{-1} and 1850-950 cm^{-1} and spectra were normalized to allow the
207	differences in the bands to be compared on the same scale (Fig. S1). The spectra of
208	each particular region were divided by the value of the spectral integral of that region.
209	Band assignments were based on previous reports for bacteria (41, 42). Several
210	common features were observed in all FT-IR spectra, demonstrating the presence of
211	polysaccharides, proteins, fatty acids and phospholipids in these three strains. The
212	strains also shared homologous spectral morphology, indicating that there are no

capsular EPS mutants cpsB and rcsC were used to investigate the roles of capsular

l Environmental	obiology
Applied and	Micro

213	significant differences in the chemical composition of the wild type and its mutants.
214	Closer observation of Fig. S1 reveals that the three strains possessed different
215	normalized intensity in the region from 950 to 1200 cm ⁻¹ , corresponding to the C-O,
216	C-O-O, and C-O-P stretching vibrations of polysaccharides (41), with the intensity
217	following the order: $rcsC$ mutant > wild type > $cpsB$ mutant. Given the genetic
218	differences of these three strains, the variation of normalized absorbance in
219	polysaccharide bands is attributed to different capsular EPS production capabilities.
220	This observation supports the rationale of using E. coli BW25113 and its isogenic
221	mutants to investigate the role of capsular EPS in photocatalytic inactivation.
222	Effects of capsular EPS on photocatalytic inactivation. Photocatalytic
223	inactivation in the non-partition system is shown in Fig. 1a. The TiO_2 dose was 100
223 224	inactivation in the non-partition system is shown in Fig. 1a. The TiO_2 dose was 100 mg/L, which was optimized in our previous study (27). The dark, light and negative
223 224 225	inactivation in the non-partition system is shown in Fig. 1a. The TiO_2 dose was 100 mg/L, which was optimized in our previous study (27). The dark, light and negative controls showed no obvious reduction in cell population (Figs. S2 and S3), suggesting
223 224 225 226	inactivation in the non-partition system is shown in Fig. 1a. The TiO_2 dose was 100 mg/L, which was optimized in our previous study (27). The dark, light and negative controls showed no obvious reduction in cell population (Figs. S2 and S3), suggesting that TiO_2 or UVA alone did not have a bactericidal affect. When the three strains were
 223 224 225 226 227 	inactivation in the non-partition system is shown in Fig. 1a. The TiO_2 dose was 100 mg/L, which was optimized in our previous study (27). The dark, light and negative controls showed no obvious reduction in cell population (Figs. S2 and S3), suggesting that TiO_2 or UVA alone did not have a bactericidal affect. When the three strains were subjected to photocatalytic inactivation by exposure to UVA for 60 min in the
 223 224 225 226 227 228 	inactivation in the non-partition system is shown in Fig. 1a. The TiO_2 dose was 100 mg/L, which was optimized in our previous study (27). The dark, light and negative controls showed no obvious reduction in cell population (Figs. S2 and S3), suggesting that TiO_2 or UVA alone did not have a bactericidal affect. When the three strains were subjected to photocatalytic inactivation by exposure to UVA for 60 min in the presence of TiO_2 , the susceptibility of the two mutants was different from the wild
 223 224 225 226 227 228 229 	inactivation in the non-partition system is shown in Fig. 1a. The TiO ₂ dose was 100 mg/L, which was optimized in our previous study (27). The dark, light and negative controls showed no obvious reduction in cell population (Figs. S2 and S3), suggesting that TiO ₂ or UVA alone did not have a bactericidal affect. When the three strains were subjected to photocatalytic inactivation by exposure to UVA for 60 min in the presence of TiO ₂ , the susceptibility of the two mutants was different from the wild type ($p < 0.01$). The wild type and overproducing strains were more sensitive to
 223 224 225 226 227 228 229 230 	inactivation in the non-partition system is shown in Fig. 1a. The TiO ₂ dose was 100 mg/L, which was optimized in our previous study (27). The dark, light and negative controls showed no obvious reduction in cell population (Figs. S2 and S3), suggesting that TiO ₂ or UVA alone did not have a bactericidal affect. When the three strains were subjected to photocatalytic inactivation by exposure to UVA for 60 min in the presence of TiO ₂ , the susceptibility of the two mutants was different from the wild type ($p < 0.01$). The wild type and overproducing strains were more sensitive to photocatalytic inactivation: the <i>rcsC</i> mutant (exhibiting increased colanic acid
 223 224 225 226 227 228 229 230 231 	inactivation in the non-partition system is shown in Fig. 1a. The TiO ₂ dose was 100 mg/L, which was optimized in our previous study (27). The dark, light and negative controls showed no obvious reduction in cell population (Figs. S2 and S3), suggesting that TiO ₂ or UVA alone did not have a bactericidal affect. When the three strains were subjected to photocatalytic inactivation by exposure to UVA for 60 min in the presence of TiO ₂ , the susceptibility of the two mutants was different from the wild type ($p < 0.01$). The wild type and overproducing strains were more sensitive to photocatalytic inactivation: the <i>rcsC</i> mutant (exhibiting increased colanic acid production) experienced the greatest decline, followed by the wild type and then the

cpsB⁻ mutant (exhibiting decreased colanic acid production). The different susceptibilities of the bacterial strains were probably due to different surface characteristics (e.g. the amount of capsular EPS), which will be further discussed below.

To further investigate the significance of capsular EPS when there is no direct 236 contact between TiO₂ and bacterial cells, the inactivation experiment was also 237 238 conducted in a partition system (Fig. 2b). In the partition system (Fig. 1b), bacterial 239 cells and TiO₂ were separated by a semipermeable membrane, which prohibited direct 240 contact between cells and TiO₂ (35). Significantly lower inactivation efficiencies were observed for all three strains compared with the non-partition system, indicating that 241 242 direct contact between TiO_2 and bacterial cells is required for effective inactivation. Interestingly, the susceptibility of the bacterial strains to photocatalytic inactivation 243 244 exhibited a reverse trend, with $cpsB^{-}$ mutant > BW25113 wild type > $rcsC^{-}$ mutant, 245 suggesting that capsular EPS can protect the cell from attack by diffusible ROS when the cells do not make direct contact with TiO₂ nanoparticles. To further explore the 246 protective role of capsular EPS, inactivation efficiencies were compared under only 247 H₂O₂(10 mM) and •OH, generated by the Fenton reaction (10 mM H₂O₂ and 0.2 mM 248 249 Fe₂SO₄) (Fig. S4). As expected, the sensitivity of the strains followed the order $cpsB^{-}$ > BW25113 wild type > rcsC. Much higher inactivation efficiencies were 250

251 observed from the Fenton reaction than H_2O_2 alone, suggesting that •OH may play a 252 more important role in the inactivation of bacterial cells than H_2O_2 in this system. 253 These results support the hypothesis that the presence of capsular EPS provides some 254 degree of protection to bacterial cells in the presence of these ROS.

255 The photocatalytic inactivation mechanism. Scavenger studies have been used to systematically investigate the effect of various reactive species that are responsible 256 257 for photocatalytic inactivation. To better understand the influence of capsular EPS on the photocatalytic inactivation process, the scavenger studies were applied to the E. 258 coli BW25113 wild type and the two mutants (Fig. 3). For Cr(VI) (e scavenger), 259 TEMPOL (•O₂⁻ scavenger), isopropanol (diffusing •OH scavenger) and Fe(II)-EDTA 260 261 $(H_2O_2 \text{ scavenger})$, the degree of bacterial inactivation was the same for all three strains. When sodium oxalate (an h^+ scavenger) was added, the cell density of all 262 263 strains only decreased to $\sim 5 \log$, which suggests h⁺ plays a moderate role in bacterial 264 inactivation. Interestingly, the three strains exhibited different susceptibilities toward photocatalytic inactivation with the addition of oxalate. In the first 10 min, the cell 265 populations of both the wild type and rcsC mutant only decreased by less than 0.5 log, 266 while the $cpsB^{-}$ mutant experienced a sharp decrease. This suggests that h^{+} plays a 267 268 more important role in the inactivation of the capsular EPS producing strain and overproducing strain than the strain with no colanic acid production (i.e., less or no 269

capsular EPS produced). Direct contact of the bacterial cells and TiO_2 is a prerequisite for the bacterial inactivation by h^+ oxidation. Although further confirmation is still necessary, it is possible that the presence of capsular EPS enhances the contact of photocatalysts and bacteria.

FT-IR provides a means to track changes in the cell structure and functionality 274 induced by the photocatalytic treatment. Figs. 4a and 4b show the FT-IR spectra of the 275 wild type at various time intervals. The peaks between 3000-2800 cm⁻¹ were 276 277 attributed to C-H stretching vibrations of -CH₃ and -CH₂ groups mainly from fatty acid (41, 42). Because the E. coli cell membrane is predominantly composed of these 278 bonds, this region can be used to probe the changes in cell membrane integrity. After 279 280 3 h, the peaks disappeared, indicating damage to the cell membrane. Most studies have reported that the mechanism for the photocatalytic inactivation of bacteria is cell 281 282 membrane damage and changes in cell permeability resulting from attack by ROS. In 283 conjunction with alternating fatty-acid bands, the decay and disappearance of the polysaccharide peaks were also observed with increasing reaction time, suggesting the 284 285 breakdown of polysaccharides with the oxidation of ROS. Polysaccharides are the dominant surface feature of the outer membrane of Gram-negative bacteria and 286 capsular EPS (42, 43). As the ROS produced by TiO₂ are highly reactive, it is 287 reasonable to infer that these molecules are important determinants of photocatalytic 288

characteristic bands of proteins, where 1700-1600 cm ⁻¹ is specific to C=O stretching vibrations in the amide-I band and 1600-1500 cm ⁻¹ is specific to N-H bending vibrations in the amide-II band. These peaks decreased during photocatalytic inactivation, indicating changes to proteins. Unlike the variation observed in the fatty-acid and polysaccharide regions, the amide-I band became dominant after 8 h of photocatalytic treatment, suggesting that proteins are more resistant to photocatalytic peroxidation than fatty acids and polysaccharides.	289	inactivation efficiency. The region between 1700 and 1500 cm ⁻¹ shows the
vibrations in the amide-I band and 1600-1500 cm ⁻¹ is specific to N-H bending vibrations in the amide-II band. These peaks decreased during photocatalytic inactivation, indicating changes to proteins. Unlike the variation observed in the fatty-acid and polysaccharide regions, the amide-I band became dominant after 8 h of photocatalytic treatment, suggesting that proteins are more resistant to photocatalytic peroxidation than fatty acids and polysaccharides.	290	characteristic bands of proteins, where 1700-1600 cm ⁻¹ is specific to C=O stretching
vibrations in the amide-II band. These peaks decreased during photocatalytic inactivation, indicating changes to proteins. Unlike the variation observed in the fatty-acid and polysaccharide regions, the amide-I band became dominant after 8 h of photocatalytic treatment, suggesting that proteins are more resistant to photocatalytic peroxidation than fatty acids and polysaccharides.	291	vibrations in the amide-I band and 1600-1500 cm ⁻¹ is specific to N-H bending
inactivation, indicating changes to proteins. Unlike the variation observed in the fatty-acid and polysaccharide regions, the amide-I band became dominant after 8 h of photocatalytic treatment, suggesting that proteins are more resistant to photocatalytic peroxidation than fatty acids and polysaccharides.	292	vibrations in the amide-II band. These peaks decreased during photocatalytic
fatty-acid and polysaccharide regions, the amide-I band became dominant after 8 h of photocatalytic treatment, suggesting that proteins are more resistant to photocatalytic peroxidation than fatty acids and polysaccharides.	293	inactivation, indicating changes to proteins. Unlike the variation observed in the
photocatalytic treatment, suggesting that proteins are more resistant to photocatalyticperoxidation than fatty acids and polysaccharides.	294	fatty-acid and polysaccharide regions, the amide-I band became dominant after 8 h of
296 peroxidation than fatty acids and polysaccharides.	295	photocatalytic treatment, suggesting that proteins are more resistant to photocatalytic
	296	peroxidation than fatty acids and polysaccharides.

The second derivative spectra in the amide-I region were also obtained to explore 297 the changes in protein secondary structure induced by photocatalytic peroxidation 298 299 (43). Table S3 summarizes the secondary structures present in E. coli. As seen in Fig. 4c, the untreated bacteria cell largely consisted of β -sheets, α -helices and aggregated 300 301 strands, with 3-turn helices as a minor feature. A significant breakdown in the protein 302 secondary structure was observed after 1 h. It is significant that cell membranes 303 consist of a lipid bilayer with embedded proteins; in E. coli, the cell membrane contains more proteins than lipids (44). These proteins are held in the membrane as a 304 result of hydrophobic interactions between the membrane lipids and the proteins. The 305 secondary structural conformation of proteins (either in α or β), with their 306 hydrophobic side chains oriented toward the outside of the molecule where they 307

interact with membrane lipids, is a prerequisite of an intact biological membrane (44).
In our study, the breakdown of the secondary structure at an early stage of the
treatment probably indicates the disruption of the cell membrane architecture.

The LIVE/DEAD BacLightTM Bacterial Viability Kit fluorescent microscopic 311 method was used to reveal changes in cell membrane integrity during the 312 313 photocatalytic treatment (32, 45). Fig. 5 presents the fluorescence microscopic images of the wild type at different time intervals. Cells that did not undergo photocatalytic 314 treatment were stained green by the nucleic acid binding stain SYTO 9TM (Fig. 5a), 315 which penetrated the bacterial membranes and emitted green light. Propidium iodide 316 317 only penetrated cells with damaged membranes and emitted red light. After being 318 photocatalytically treated for 5 min, a portion of bacterial cells were stained red (Fig. 319 5b), indicating a loss of cell membrane integrity (or alteration in membrane 320 permeability). With prolonged irradiation time, more and more red-stained bacterial 321 cells were observed (Figs. 5c and 5d). The fluorescence microscopic observations 322 thus provide strong evidence of bacterial membrane damage from TiO2-UVA photocatalytic treatment. To quantitatively reveal the cell membrane integrity during 323 the photocatalytic treatment, the fluorescent green to red ratio of the stained cells was 324 325 obtained using a microplate reader with a standard curve (Fig. S5). All bacterial cells lost their cell membrane integrity with prolonged photocatalytic treatment. 326

327	Susceptibility ($p < 0.01$) followed the order $rcsC > wild type > cpsB$, which is
328	consistent with the results of the plates count. However, the fluorescent green to red
329	ratio dropped to zero after 60 min for all three strains, whereas viable cells were still
330	observed for the $cpsB^{-}$ mutant and wild type using the plates count method. This
331	discrepancy is probably due to the low detection limit (6 log) of the microplate scale
332	fluorochrome assay with the LIVE/DEAD BacLight TM Bacterial Viability Kit (46).

These findings indicate that ROS produced by TiO₂ act as nonselective oxidants 333 to cell surface biomolecules, including lipids, polysaccharides and protein. Clearly, 334 335 the cell membrane is essential to the survival of bacterial cells. Damage of the cell 336 membrane by ROS has been reported to be the fundamental mechanism of 337 photocatalytic inactivation of bacteria (21, 47, 48). Thus, it is not surprising that capsular EPS could decrease inactivation efficiency by competing with the cell 338 339 membrane for available ROS. Among the ROS produced, •OH and $•O_2^-$ are short-lived and function at very close vicinity of the TiO₂ surface. H₂O₂ is much 340 341 longer-lived, but much less detrimental (49). It is also possible that direct attack of the cell membrane by e^{-} or h^{+} could cause lethal damage to the cell. In this instance, the 342 close contact between the photocatalyst particles and the bacteria is the key to 343 obtaining high photocatalytic inactivation efficiencies. In the present study, the 344 presence of capsular EPS enhanced the photocatalytic inactivation of bacteria in a 345

non-partition system using TiO_2 -UVA. It is very likely that capsular EPS enhances the adhesion of TiO_2 to the surface of bacterial cells, thereby leading to photocatalytic inactivation of the bacteria. This effect appears to outweigh the protective role of the EPS.

350	Capsular EPS-mediated adhesion of TiO_2 to bacteria. Fluorescence
351	microscopic and SEM analyses were used to investigate the interaction of $\mathrm{TiO}_2\mathrm{with}$
352	the three strains in the dark and to determine how capsular EPS play a role in this
353	interaction. In the absence of any TiO ₂ particles, all of the live <i>E. coli</i> cells were
354	homogeneously suspended and did not agglomerate (Fig. S6). After 30 min contact
355	with TiO_2 in the dark, cells of the wild type and the <i>rcsC</i> mutant (EPS overproducing
356	strain) started to form aggregates (Figs. 6a and 6c), whereas cell aggregation was not
357	observed for the cpsB ⁻ mutant (Fig. 6b). Direct observation by SEM revealed more
358	TiO_2 particles loaded on the cell surface of the wild type and <i>rcsC</i> mutant (Figs. 6d
359	and 6f). For the $cpsB^2$ mutant, most of the TiO ₂ particles were seen on the slip beside
360	the cells (Fig. 6e). The energy dispersive X-Ray (EDX) spectra (Fig. S7) confirmed
361	this observation. These results suggest that capsular EPS play an important role in the
362	interaction of the bacterial cells with TiO_2 particles, which is certainly involved in the
363	inactivation mechanisms of the photocatalytic process.

364 To understand the role of capsular EPS in adhesion interactions the XDLVO

375

365	approach was used to evaluate the physicochemical forces for contact between TiO_2
366	and the bacterial cells. It was assumed for calculation purposes that the bacterial cells
367	were spherical, with a radius around 0.5 μm based on SEM images. Agglomerates of
368	TiO_2 were assumed to be monodispersed spheres with radii 200 nm. The interactions
369	between the bacterial cells and TiO_2 did not appear to be greatly influenced by radius
370	size as the calculated EL, LW, and AB interaction energies were in the same order of
371	magnitude.
372	The zeta potentials of the bacterial cells and ${\rm TiO}_2$ were also used to represent
373	surface potentials (Fig. S8) (38). Zeta potential measurements reveal that these three
374	strains are all negatively charged, whereas TiO_2 was positively charged at the test pH

276	the heaterial calls and TiO, non-onarticles. Average contact angles were manufacted
3/6	the bacterial cens and 110_2 hanoparticles. Average contact angles were measured for
377	three probe liquids on four lawns (TiO ₂ , wild type, <i>cpsB⁻</i> mutant and <i>rcsC⁻</i> mutant);
378	these are listed in Table S4. The values of γ^{LW} , γ^+ , γ^- , A and $\Delta G_{d_0}^{AB}$ for the
379	three strains and TiO_2 were calculated using the equation in the supporting text and
380	shown in Table 1. The Hamaker constant A of the bacteria-water-TiO ₂ system for
381	wild type, <i>cpsB</i> ⁻ mutant and <i>rcsC</i> ⁻ mutant was calculated as -0.512 \times 10 ⁻²¹ , -0.979 \times
382	$10^{\text{-}21}$ and $0.177 \times 10^{\text{-}21}\text{J}$ respectively, suggesting a repulsive LW interaction between
383	TiO ₂ nanoparticles and the capsular EPS overproducing strain, while an attractive LW

(6.5) of the photocatalytic treatment, indicating an attractive EL interaction between

interaction with TiO_2 was obtained for the wild type and non-capsular EPS strain. The
calculated values $\Delta G_{d_0}^{AB}$ in bacteria-water-TiO ₂ for wild type, <i>cpsB⁻</i> mutant and <i>rcsC</i>
mutant were -2.25, 1.81 and -3.60 mJ/m ² , respectively, indicating that the presence of
387 capsular EPS favored an attractive interaction between TiO ₂ nanoparticles and
388 bacterial cells while the absence of capsular EPS resulted in a repulsive AB

interaction.

389

The total XDLVO interaction profiles reflect the sum of EL, LW and AB 390 391 interaction. The characteristic XDLVO interaction profiles between the three strains 392 and TiO₂ as a function of distance are shown in Fig. 7a. Both the wild type and rcsC 393 mutant experienced attraction with TiO₂ from 4 nm, and the value of total energy 394 increased with decreasing distance until they reached the primary minimum. However, the total energy for the $cpsB^{-}$ mutant interaction with TiO₂ was always positive below 395 396 4 nm. According to this energy profile adhesion would not occur for the cpsB⁻ mutant. 397 These results accord with the results from the fluorescence microscopic and SEM analyses, which suggest that the presence of capsular EPS facilitated the adhesion of 398 TiO₂ to bacterial cells, as well as their aggregation. Based on the different approaches 399 of TiO₂ toward the cell, the order of the inactivation efficiencies in the non-partition 400 401 system can be qualitatively explained by the XDLVO theory. The magnitude of the AB interaction energy was generally higher than those of the EL and LW (Figs. 7b, 7c 402

Applied and Environmental

Microbiology

403	and 7d). Previous studies have shown that nanoparticles attached on surfaces
404	increases with the presence of biofilm EPS, in a way that cannot be well predicted by
405	the traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (50-52). The
406	results of this study suggest that the interactions between bacteria and nanoparticles
407	may be largely governed by the AB (hydrophobic) interaction, which coincides well
408	with the XDLVO theory in which a hydrophobic interaction energy is added to the
409	DLVO theory. Though there are many studies stating interactions between
410	nanoparticles and EPS, few have focused on how capsular EPS levels affect the
411	interaction and how EPS-nanoparticle interactions affect the viability of bacteria. As
412	we have shown, the presence of capsular EPS influenced the physicochemical
413	properties of the surface of bacterial cells and resulted in a strong attractive AB
414	interaction, which consequently improved photocatalytic inactivation efficiency.
415	

416 CONCLUSION

417 Overall, the findings obtained from this study suggest that capsular EPS play a 418 dual role in the photocatalytic inactivation of bacteria: (i) the presence of capsular 419 EPS can protect the bacterial cell by consuming photo-generated reactive species; and 420 (ii) capsular EPS promotes the adhesion of TiO₂ particles to the cell surface and 421 subsequently enhances photocatalytic efficiency. These results not only broaden the 422 limited literature concerning the effect of capsular EPS on the photocatalytic 423 inactivation of bacteria, but they also have important implications for the transport 424 and fate of TiO_2 nanoparticles in aquatic environments.

From a practical point of view, capsular EPS, as a mediator of bacterial cell-TiO₂ 425 aggregate formation and a protective barrier for bacterial cells has to be taken into 426 account in the design and operation of photocatalytic disinfection technology. The 427 428 presence of capsular EPS can enhance photocatalytic inactivation efficiencies due to the formation of bacteria-TiO2 aggregates. More generally, the applicability of 429 430 XDLVO theory to bacteria-nanoparticle interactions demonstrated by this work has important implications not only for modeling and predicting photocatalytic 431 432 inactivation in natural and engineered systems, but also for the further investigations of nanomaterial for various disciplines where bacteria-nanoparticle interactions are 433 434 important preconditions. For instance, the investigations of (i) contact between 435 metal-reducing bacteria and metal-bearing minerals that are required for dissimilatory growth (53); (ii) hybrid systems that combine the catalytic and synthetic power of 436 bacteria with the optoelectronic capabilities of nanomaterials (54); and (iii) 437 nanotoxicity studies (55). Our results highlight the critical role of capsular EPS in 438 439 bacteria-nanoparticle interactions and this should be taken into account in future bacteria-nanoparticle studies. 440

441	To the best of our knowledge, studies using single-gene knockout mutants to
442	investigate the mechanism of photocatalytic inactivation are still very limited.
443	Nevertheless, the findings of this study suggest that comparing different mutants with
444	the parental strain is an important way to better understand the mechanism of
445	photocatalytic inactivation of bacteria.

446 ACKNOWLEDGMENTS

The project was supported by a research grant (GRF476811) of the Research Grant
Council, Hong Kong SAR Government and CAS/SAFEA International Partnership
Program for Creative Research Teams to P.K. Wong, and the research grant
(41373102 and 21077104) of National Science Foundation of China to T.C. An and
G.Y. Li.

453 **REFERRENCES**

- 454 1. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes
- 455 **AM.** 2008. Science and technology for water purification in the coming decades.
- 456 Nature **452:**301-310. <u>http://dx.doi.org/10.1038/nature06599</u>.
- 2. Zhang LS, Wong KH, Chen ZG, Yu JC, Zhao JC, Hu C, Chan CY, Wong PK.
- 458 2009. AgBr-Ag-Bi₂WO₆ nanojunction system: A novel and efficient
 459 photocatalyst with double visible-light active components. Appl. Catal. A-Gen.
- 460 **363:**221-229. <u>http://dx.doi.org/10.1016/j.apcata.2009.05.028</u>.
- 461 3. Chong MN, Jin B, Chow CWK, Saint C. 2010. Recent developments in
 462 photocatalytic water treatment technology: A review. Water Res. 44:2997-3027.
 463 http://dx.doi.org/10.1016/j.watres.2010.02.039.
- Zhang LS, Wong KH, Yip HY, Hu C, Yu JC, Chan CY, Wong PK. 2010.
 Effective photocatalytic disinfection of E. coli K-12 using AgBr-Ag-Bi₂WO₆
 nanojunction system irradiated by visible Light: The role of diffusing hydroxyl
 radicals. Environ. Sci. Technol. 44:1392-1398.
- 468 <u>http://dx.doi.org/10.1021/Es903087w</u>.
- 469 5. Chen YM, Lu AH, Li Y, Zhang LS, Yip HY, Zhao HJ, An TC, Wong PK.
 470 2011. Naturally occurring sphalerite as a novel cost-effective photocatalyst for
 471 bacterial disinfection under visible light. Environ. Sci. Technol. 45:5689-5695.
- 472 <u>http://dx.doi.org/10.1021/es200778p</u>.
- Zhang LS, Wang HL, Chen ZG, Wong PK, Liu JS. 2011. Bi₂WO₆ 473 6. micro/nano-structures: Synthesis, 474 modifications and visible-light-driven 475 photocatalytic applications. Appl. Catal. **B-Environ**. **106:**1-13. http://dx.doi.org/10.1016/j.apcatb.2011.05.008. 476
- 477 7. Wong MS, Chu WC, Sun DS, Huang HS, Chen JH, Tsai PJ, Lin NT, Yu MS,

480	Environ. Microbiol. 72:6111-6116. <u>http://dx.doi.org/10.1128/Aem.02580-05</u> .
481 8.	Dalrymple OK, Stefanakos E, Trotz MA, Goswami DY. 2010. A review of the
482	mechanisms and modeling of photocatalytic disinfection. Appl. Catal. B-Environ.
483	98:27-38. http://dx.doi.org/10.1016/j.apcatb.2010.05.001.
484 9.	Robertson JMC, Robertson PKJ, Lawton LA. 2005. A comparison of the
485	effectiveness of TiO_2 photocatalysis and UVA photolysis for the destruction of
486	three pathogenic micro-organisms. J. Photochem. Photobiol. A-Chem. 175:51-56.
487	http://dx.doi.org/10.1016/j.jphotochem.2005.04.033.
488 10.	Nadtochenko VA, Sarkisov OM, Nikandrov VV, Chubukov PA, Denisov NN.
489	2008. Inactivation of pathogenic microorganisms in the photocatalytic process on
490	nanosized TiO ₂ crystals. Russ. J. Phys. Chem. B 2:105-114.
491	http://dx.doi.org/10.1007/s11826-008-1016-0.
492 11.	Kim TY, Park SS, Kim SJ, Cho SY. 2011. A study of bactericidal effect and
493	optimization of pathogenic bacteria using ${\rm TiO}_2$ photocatalyst. J. Nanosci.
494	Nanotechnol. 11:1551-1554. http://dx.doi.org/10.1166/jnn.2011.3339.
495 12.	Pigeot-Remy S, Simonet F, Errazuriz-Cerda E, Lazzaroni JC, Atlan D,
496	Guillard C. 2011. Photocatalysis and disinfection of water: Identification of
497	potential bacterial targets. Appl. Catal. B-Environ. 104:390-398.
498	http://dx.doi.org/10.1016/j.apcatb.2011.03.001.
499 13.	Eboigbodin KE, Biggs CA. 2008. Characterization of the extracellular
500	polymeric substances produced by Escherichia coli using infrared spectroscopic,
501	proteomic, and aggregation studies. Biomacromolecules 9:686-695.
502	http://dx.doi.org/10.1021/Bm701043c.
503 14.	Gilbert P, Das J, Foley I. 1997. Biofilm susceptibility to antimicrobials.

Hsu SF, Wang SL, Chang HH. 2006. Visible-light-induced bactericidal activity

of a nitrogen-doped titanium photocatalyst against human pathogens. Appl.

478

504		Advances in dental research 11:160-167.
505		http://dx.doi.org/10.1177/08959374970110010701.
506	15.	Xue Z, Sendamangalam VR, Gruden CL, Seo Y. 2012. Multiple roles of
507		extracellular polymeric substances on resistance of biofilm and detached clusters.
508		Environ. Sci. Technol. 46:13212-13219. http://dx.doi.org/10.1021/es3031165.
509	16.	Liu Y, Li J, Qiu XF, Burda C. 2007. Bactericidal activity of nitrogen-doped
510		metal oxide nanocatalysts and the influence of bacterial extracellular polymeric
511		substances (EPS). J. Photochem. Photobiol. A-Chem. 190:94-100.
512		http://dx.doi.org/10.1016/j.jphotochem.2007.03.017.
513	17.	Gong AS, Lanzl CA, Cwiertny DM, Walker SL. 2012. Lack of influence of
514		extracellular polymeric substances (EPS) level on hydroxyl radical mediated
515		disinfection of <i>Escherichia coli</i> . Environ. Sci. Technol. 46:241-249.
516		http://dx.doi.org/10.1021/es202541r.
517	18.	Nielsen PH, Jahn A, Palmgren R. 1997. Conceptual model for production and
518		composition of exopolymers in biofilms. Water Sci. Technol. 36:11-19.
519		http://dx.doi.org/10.1016/S0273-1223(97)00318-1.
520	19.	Kikuchi Y, Sunada K, Iyoda T, Hashimoto K, Fujishima A. 1997.
521		Photocatalytic bactericidal effect of TiO_2 thin films: Dynamic view of the active
522		oxygen species responsible for the effect. J. Photochem. Photobiol. A-Chem.
523		106:51-56. http://dx.doi.org/10.1016/S1010-6030(97)00038-5.
524	20.	Mills A, LeHunte S. 1997. An overview of semiconductor photocatalysis. J.
525		Photochem. Photobiol. A-Chem. 108:1-35.
526		http://dx.doi.org/10.1016/S1010-6030(97)00118-4.
527	21.	Gogniat G, Thyssen M, Denis M, Pulgarin C, Dukan S. 2006. The bactericidal
528		effect of TiO_2 photocatalysis involves adsorption onto catalyst and the loss of
529		membrane integrity. FEMS Microbiol. Lett. 258: 18-24.
		27

530 <u>http://dx.doi.org/10.1111/j.1574-6968.2006.00190.x.</u>

- 22. Cheng CL, Sun DS, Chu WC, Tseng YH, Ho HC, Wang JB, Chung PH,
 Chen JH, Tsai PJ, Lin NT, Yu MS, Chang HH. 2009. The effects of the
 bacterial interaction with visible-light responsive titania photocatalyst on the
 bactericidal performance. J. Biomed. Sci. 16:7.
 http://dx.doi.org/10.1186/1423-0127-16-7.
- 23. Pablos C, van Grieken R, Marugan J, Chowdhury I, Walker SL. 2013. Study
 of bacterial adhesion onto immobilized TiO₂: Effect on the photocatalytic activity
 for disinfection applications. Catal. Today 209:140-146.
 http://dx.doi.org/10.1016/j.cattod.2012.12.010.
- 540 24. Chia TWR, Nguyen VT, McMeekin T, Fegan N, Dykes GA. 2011.
 541 Stochasticity of bacterial attachment and its predictability by the extended
 542 Derjaguin-Landau-Verwey-Overbeek theory. Appl. Environ. Microbiol.
 543 77:3757-3764. http://dx.doi.org/10.1128/Aem.01415-10.
- 544 25. Thabet S, Simonet F, Lemaire M, Guillard C, Cotton P. 2014. Impact of
 545 photocatalysis on fungal cells: depiction of cellular and molecular effects on
 546 Saccharomyces cerevisiae. Appl. Environ. Microbiol. 80:7527-7535.
 547 http://dx.doi.org/10.1128/AEM.02416-14.
- 548 26. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA,
 549 Tomita M, Wanner BL, Mori H. 2006. Construction of *Escherichia coli* K-12
 550 in-frame, single-gene knockout mutants: the Keio collection. Molec. Syst. Biol.
 551 2:2006 0008. <u>http://dx.doi.org/10.1038/msb4100050</u>.
- 552 27. Gao MH, An TC, Li GY, Nie X, Yip HY, Zhao H, Wong PK. 2012. Genetic
 553 studies of the role of fatty acid and coenzyme A in photocatalytic inactivation of
- studies of the fole of fatty acid and coenzyme 74 in photocatalytic macrivation of
- 554 *Escherichia coli.* Water Res. **46:**3951-3957.
- 555 <u>http://dx.doi.org/10.1016/j.watres.2012.05.033</u>.

556 28.	Nie X, Li GY, Gao MH, Sun HW, Liu XL, Zhao HJ, Wong PK, An TC. 2014.
557	Comparative study on the photoelectrocatalytic inactivation of Escherichia coli
558	K-12 and its mutant Escherichia coli BW25113 using TiO_2 nanotubes as a
559	photoanode. Appl. Catal. B-Environ. 147:562-570.
560	http://dx.doi.org/10.1016/j.apcatb.2013.09.037.
561 29.	Shi H, Huang G, Xia D, Ng TW, Yip HY, Li G, An T, Zhao H, Wong P. 2015.
562	Role of in situ resultant H_2O_2 in the Visible-Light-Driven photocatalytic
563	inactivation of E. coli using natural sphalerite: A genetic study. J. Phys. Chem. B
564	119:3104-3111. http://dx.doi.org/10.1021/jp511201w.
565 30.	Ratto M, Verhoef R, Suihko ML, Blanco A, Schols HA, Voragen AGJ,
566	Wilting R, Siika-aho R, Buchert J. 2006. Colanic acid is an exopolysaccharide
567	common to many enterobacteria isolated from paper-machine slimes. J. Indust.
568	Microbiol. Biotechnol. 33: 359-367.
569	http://dx.doi.org/10.1007/s10295-005-0064-1.
570 31.	Hanna A, Berg M, Stout V, Razatos A. 2003. Role of capsular colanic acid in
571	adhesion of uropathogenic Escherichia coli. Appl. Environ. Microbiol.
572	69:4474-4481. http://dx.doi.org/10.1128/Aem.69.8.4474-4481.2003.
573 32.	Xia DH, Ng TW, An TC, Li GY, Li Y, Yip HY, Zhao HJ, Lu AH, Wong PK.
574	2013. A recyclable mineral catalyst for visible-light-driven photocatalytic
575	inactivation of bacteria: Natural magnetic sphalerite. Environ. Sci. Technol.
576	47: 11166-11173. <u>http://dx.doi.org/10.1021/es402170b</u> .
577 33.	Liu SW, Huang GC, Yu JG, Ng TW, Yip HY, Wongt PK. 2014. Porous
578	fluorinated SnO_2 hollow nanospheres: Transformative self-assembly and
579	photocatalytic inactivation of bacteria. ACS Appl. Mater. Interf. 6:2405-2412.
580	http://dx.doi.org/10.1021/Am4047975.
581 34.	Bergmaier D, Lacroix C, Macedo MG, Champagne CP. 2001. New method 29

5	82		for exopolysaccharide determination in culture broth using stirred ultrafiltration
5	83		cells. Appl. Microbiol. Biot. 57:401-406.
5	84		http://dx.doi.org/10.1007/s002530100764.
5	85	35.	Wang WJ, Yu Y, An TC, Li GY, Yip HY, Yu JC, Wong PK. 2012.
5	86		Visible-light-driven photocatalytic inactivation of <i>E. coli</i> K-12 by bismuth
5	87		vanadate nanotubes: Bactericidal performance and mechanism. Environ. Sci.
5	88		Technol. 46:4599-4606. http://dx.doi.org/10.1021/es2042977.
5	89	36.	Chen G, Strevett KA. 2003. Microbial surface thermodynamics and interactions
5	90		in aqueous media. J. Colloid Interf. Sci 261:283-290.
5	91		http://dx.doi.org/10.1016/S0021-9797(02)00242-4.
5	92	37.	Schwegmann H, Ruppert J, Frimmel FH. 2013. Influence of the pH-value on
5	93		the photocatalytic disinfection of bacteria with TiO_2 - Explanation by DLVO and
5	94		XDLVO theory. Water Res. 47:1503-1511.
5	95		http://dx.doi.org/10.1016/j.watres.2012.11.030.
5	96	38.	Wang LX, Xu SP, Li J. 2011. Effects of phosphate on the transport of
5	97		Escherichia coli O157:H7 in saturated quartz sand. Environ. Sci. Technol.
5	98		45: 9566-9573. <u>http://dx.doi.org/10.1021/es201132s</u> .
5	99	39.	Bayoudh S, Othmane A, Mora L, Ben Ouada H. 2009. Assessing bacterial
6	00		adhesion using DLVO and XDLVO theories and the jet impingement technique.
6	01		Colloid Surface. B 73:1-9. http://dx.doi.org/10.1016/j.colsurfb.2009.04.030.
6	02	40.	Gottesman S, Stout V. 1991. Regulation of capsular polysaccharide synthesis in
6	03		<i>Escherichia coli</i> K12. Molec. Microbiol. 5: 1599-1606.
6	04		http://dx.doi.org/10.1111/j.1365-2958.1991.tb01906.x.
6	05	41.	Schmitt J, Flemming HC. 1998. FTIR-spectroscopy in microbial and material
6	06		analysis. Int. Biodeter. Biodegr 41:1-11.
6	07		http://dx.doi.org/10.1016/S0964-8305(98)80002-4.

608	42.	Kiwi J, Nadtochenko V. 2005. Evidence for the mechanism of photocatalytic
609		degradation of the bacterial wall membrane at the TiO_2 interface by ATR-FTIR
610		and laser kinetic spectroscopy. Langmuir. 21: 4631-4641.
611		http://dx.doi.org/10.1021/La0469831.
612	43.	Badireddy AR, Korpol BR, Chellam S, Gassman PL, Engelhard MH, Lea
613		AS, Rosso KM. 2008. Spectroscopic characterization of extracellular polymeric
614		substances from Escherichia coli and Serratia marcescens: Suppression using
615		sub-inhibitory concentrations of bismuth thiols. Biomacromolecules 9:3079-3089.
616		http://dx.doi.org/10.1021/Bm800600p.
617	44.	Nelson DL, Cox MM. 2004. Lehninger Principles of Biochemistry, Forth
618		Edition. W. H. Freeman, New York.
619	45.	Pigeot-Remy S, Simonet F, Atlan D, Lazzaroni JC, Guillard C. 2012.
620		Bactericidal efficiency and mode of action: A comparative study of
621		photochemistry and photocatalysis. Water Res. 46:3208-3218.
622		http://dx.doi.org/10.1016/j.watres.2012.03.019.
623	46.	Alakomi HL, Matto J, Virkajarvi I, Saarela M. 2005. Application of a
624		microplate scale fluorochrome staining assay for the assessment of viability of
625		probiotic preparations. J. Microbiol. Meth. 62:25-35.
626		http://dx.doi.org/10.1016/j.mimet.2005.01.005.
627	47.	Liou JW, Gu MH, Chen YK, Chen WY, Chen YC, Tseng YH, Hung YJ,
628		Chang HH. 2011. Visible light responsive photocatalyst induces progressive and
629		apical-terminus preferential damages on Escherichia coli surfaces. PLOS One
630		6:e19982. http://dx.doi.org/10.1371/journal.pone.0019982.
631	48.	Carre G, Hamon E, Ennahar S, Estner M, Lett MC, Horvatovich P, Gies JP,
632		Keller V, Keller N, Andre P. 2014. TiO_2 photocatalysis damages lipids and

634 <u>http://dx.doi.org/10.1128/Aem.03995-13</u>.

- 49. Imlay JA. 2003. Pathways of oxidative damage. Annu. Rev. Microbiol.
 57:395-418. http://dx.doi.org/10.1146/annurev.micro.57.030502.090938.
- 637 50. Tong MP, Ding JL, Shen Y, Zhu PT. 2010. Influence of biofilm on the transport
- 638 of fullerene (C-60) nanoparticles in porous media. Water Res. 44:1094-1103.
- 639 <u>http://dx.doi.org/10.1016/j.watres.2009.09.040</u>.
- 51. Lerner RN, Lu QY, Zeng HB, Liu Y. 2012. The effects of biofilm on the
 transport of stabilized zerovalent iron nanoparticles in saturated porous media.
 Water Res. 46:975-985. <u>http://dx.doi.org/10.1016/j.watres.2011.11.070</u>.
- 52. Jiang XJ, Wang XT, Tong MP, Kim H. 2013. Initial transport and retention
 behaviors of ZnO nanoparticles in quartz sand porous media coated with
 Escherichia coli biofilm. Environ. Pollut. 174:38-49.
 http://dx.doi.org/10.1016/j.envpol.2012.11.016.
- 53. Luef B, Fakra SC, Csencsits R, Wrighton KC, Williams KH, Wilkins MJ,
 Downing KH, Long PE, Comolli LR, Banfield JF. 2013. Iron-reducing
 bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may
 support planktonic growth. Isme Journal 7:338-350.
 http://dx.doi.org/10.1038/ismej.2012.103.
- 54. Sakimoto KK, Liu C, Lim J, Yang P. 2014. Salt-induced self-assembly of
 bacteria on nanowire arrays. Nano Lett 14:5471-5476.
 http://dx.doi.org/10.1021/nl502946j.

655 55. Chen KL, Bothun GD. 2014. Nanoparticles meet cell membranes: Probing
656 nonspecific interactions. using model membranes. Environ. Sci. Technol.
657 48:873-880. http://dx.doi.org/10.1021/Es403864v.

658

660 Figure captions

Fig 1. The schematic illustration of photocatalytic inactivation set up, (a) The non-partition system, (b) The partition system; and (c) colanic acid production of the wild type, $cpsB^{-}$ mutant and $rcsC^{-}$ mutant. Bars represent standard deviations (n=3) and data were statistically significant at p < 0.001calculated by one-way ANOVA.

Fig 2. Comparison of photocatalytic inactivation efficiencies of wild type with its single-gene knock out *cpsB*⁻ mutant and *rcsC* mutant in (a) non-partition system and (b) partition system. TiO₂ concentration = 100 mg/L, initial cell density = 2×10^7 cfu/mL, light intensity = 0.18 mW/cm². Bars represent standard deviations and data were statistically significant at p < 0.01calculated by repeated-measures ANOVA.

Fig 3. Photocatalytic inactivation efficiency of wild type (a) and its single-gene knock out *cpsB⁻* mutant (b) and *rcsC* mutant (c), with different scavengers (0.5 mM sodium oxalate, 5 mM isopropanol, 0.05 mM Cr(VI), 2 mM TEMPOL and 0.1 mM Fe(II)-EDTA). Bars represent standard deviations (*n*=3).

Fig 4. FT-IR spectra of wild type at different irradiation times. Bands in the spectral region of 3000-2650 cm⁻¹ (a) and Bands in the spectral region of 1850-950 cm⁻¹(b); and Second derivative spectra in amide I (1700-1600 cm⁻¹) (c).

Fig 5. Fluorescence microscopic images of wild type treated by TiO₂-UVA at (a) 0
min, (b) 5 min, (c) 10 min and (d) 20 min. The scale bars are 20 μm.

682	Fig 6.	Fluorescence microscopic images of E. coli cells after 30 min treatment of
683		contact with TiO ₂ nanoparticles in dark: (a) wild type, (b) cpsB ⁻ mutant and
684		(c) <i>rcsC</i> mutant. The scale bars are 20 μ m, and SEM images of <i>E. coli</i> cells
685		after 30 min treatment of contact with TiO_2 P25 nanoparticles in dark: (d)
686		wild type, (e) <i>cpsB</i> ⁻ mutant and (f) <i>rcsC</i> ⁻ mutant.
687	Fig 7.	Interaction profiles of (a) wild type, $cpsB^{-}$ mutant and $rcsC^{-}$ mutant with TiO ₂
688		according to XDLVO theory, and the EL (electrostatic double layer), LW
689		(Lifshiitz-van der Waals) and AB (Lewis acid-base) interaction profiles for
690		(b) wild type, (c) <i>cpsB</i> ⁻ mutant and (d) <i>rcsC</i> mutant, repectively.

691

694 695

699 **Fig. 3**.

701 Fig. 4.

Wavenumber (cm⁻¹)

703

702

AEM

704 Fig 5.

705

707 Fig 6.

709

Applied and Environmental Microbiology

	e III
4	
C)
_	o l
Ì	Ŭ
7	SI
6	Q.
	0
1	
	š
	2
1	σ
5	5
5	Ĕ
1	Ð
	Ŋ
<	1

Ø	
C)	
Ĕ	
Ē	>
Ľ	8
2	.0
	<u>_</u>
g	2
Б	.i
ö	2
≞	
0	

712	Table 1. Surface energy of TiO_2 and <i>E. coli</i> cells in mJ/m ⁻²						
		${\cal Y}_{ m L}^{ m LW}$	${\gamma}^{*}_{ m L}$	$\gamma_{ m L}$	$\gamma_{ m \scriptscriptstyle L}^{ m \scriptscriptstyle AB}$	$\Delta G^{AB}_{d_0}$	A in 10 ⁻²¹ J
	TiO ₂	5.5	47.5	32.2	29.8		
	wild type	6.4	43.0	33.1	25.2	-2.3	-0.512
	<i>cpsB</i> ⁻ mutant	4.8	50.3	30.9	28.4	1.8	-0.979
	rcsC mutant	9.3	42.3	39.7	20.7	-3.6	0.177

of TiO₂ and *E* coli cells in mI/m⁻² T-1-- 1 0 c

713

714

Figure 1

Figure 2

Figure 3

Figure 4

1700 169

Figure 5

Figure 6

Figure 7

	$\gamma_{\scriptscriptstyle m L}^{\scriptscriptstyle m LW}$	$\gamma^{\scriptscriptstyle +}_{\scriptscriptstyle m L}$	$\gamma_{ m L}$	$\gamma_{ m \scriptscriptstyle L}^{ m \scriptscriptstyle AB}$	$\Delta G^{AB}_{d_0}$	A in 10 ⁻²¹ J
TiO ₂	5.5	47.5	32.2	29.8		
wild type	6.4	43.0	33.1	25.2	-2.3	-0.512
cpsB ⁻ mutant	4.8	50.3	30.9	28.4	1.8	-0.979
rcsC mutant	9.3	42.3	39.7	20.7	-3.6	0.177

Table 1. Surface energy of TiO_2 and *E. coli* cells in mJ/m^{-2}